

© 2001 by CRC Press LLC

20

Digital Avionics
Modeling and

Simulation

20.1 Introduction

20.2 Underlying Principles

Historic Perspective • Economic Perspective • Design
Perspective • Market Perspective • Requirements in the Trade
Space • Technical Underpinnings of the Practice • Summary
Comments

20.3 Best Practices

Requirements Engineering • Top-Down System Simulation •
TDSS Plan • TDSS Process • Software Modeling in TDSS

20.4 Performance Modeling for System Partitioning
(A Case Study)

System Description • Model Development • Modeling
Results • Summary

20.5 Research Issues and Summary

Defining Terms

References

Further Information

20.1 Introduction

In order to realize unprecedented but operationally essential levels of avionics system performance,
reliability, supportability, and affordability, commercial industry and the military will draw on advanced
technologies, methods, and development techniques in virtually every area of aircraft design, develop-
ment, and fabrication. Federated avionics architectures, integrated avionics architectures, hybrid systems
architectures, and special purpose systems such as flight control systems, engine control systems, navi-
gation systems, reconnaissance collection systems, electronic combat systems, weapons delivery systems,
and communications systems all share certain characteristics, which are germane to digital systems
modeling and simulation. All of these classes of avionics systems are increasing in complexity of function
and design, and are making increased use of digital computer resources. Given this, commercial and
military designers of new avionics systems and of upgrades to existing systems must understand, incor-
porate, and make use of state-of-the-art methods, disciplines, and practices of digital systems design.
This chapter presents fundamentals, best practices, and examples of digital avionics systems modeling
and simulation.

Jack Strauss

Zycad, Inc.

Terry Venema

Zycad, Inc.

Grant Stumpf

Zycad, Inc.

John Satta

Zycad, Inc.

© 2001 by CRC Press LLC

20.2 Underlying Principles

The fundamental principle of modeling and simulation is stated as follows. The results of most math-
ematical processes are either correct or incorrect. Modeling and simulation has a third possibility. The
process can yield results that are correct but irrelevant [Strauss 1994]. With this startling but true
realization of the possible results of modeling and simulation, it is important to understand the different
perspectives that give rise to the motivation for modeling and simulation, the trade space for the
development effort to include the users and systems requirements, and the technical underpinnings of
the practice.

20.2.1 Historic Perspective

The past 30 years of aviation has seen extraordinary innovation in all aspects of design and manufacturing
technology. Digital computing resources have been employed in all functional areas of avionics, including
communication, navigation, flight controls, propulsion control, and all areas of military weapon systems.
As analog, mechanical, and electrical systems have been replaced or enhanced with digital electronics,
there has been an increased demand for new digital computing techniques and for higher performance
digital computing resources.

Special purpose data, signal, and display processors were commonly implemented in the late 1960s
and early 1970s [Swangim et al., 1989]. Special purpose devices gave way to programmable data, signal,
and display processors in the early to mid 1980s. These devices were programmed at a low level—assembly
language programming was common. The late 1980s and early 1990s have seen commercial and military
avionics adopting the use of high-performance general-purpose computing devices programmed in high-
order languages. The USAF F-22 fighter, for example, incorporates general-purpose, commercially avail-
able, microprocessors programmed in Ada. The F-22 has an operational flight program consisting of
nearly one million lines of Ada code and onboard computing power on the order of 20 billion operations
per second of signal processing and 500 millon intstructions per second (MIPS) of data processing.
Additionally, there is increasing use of commercial off-the-shelf (COTS) products such as processor
boards, storage devices, graphics displays, and fiber optic communications networks for many military
and commercial avionics applications.

COTS product designers and avionics systems developers are making it a standard engineering practice
to model commercial computer products and digital avionics products and systems at all levels of design
abstraction. As the complexity of electronics design dramatically has increased, so too has modeling and
simulation technology in both functional complexity and implementation. Complex computer-aided
design (CAD) software can be several hundred thousand lines of code. These software products require
advanced engineering workstation computing resources with sophisticated file and storage structures
and data management schemes. Workstations capable of 50 MIPS with several-gigabyte disk drives,
connected with high-speed local area networks (LANs) are common. Additionally, special purpose
hardware environments, used to enhance and accelerate simulation and modeling, have increased in
performance and complexity to supercomputing levels. Hardware accelerators are now capable of eval-
uating over a million events per second and rapid prototype equipment can reach events per second.
At this point in history, the complexity and performance of modeling and simulation technology is equal
to the digital avionics products they are used to develop.

20.2.2 Economic Perspective

For commercial system designers, a critical product development factor that has significant impact on the
economic viability of any given product release is time-to-market. The first product to market generally
recoups all of the nonrecurring engineering and development costs and commonly captures as much as
half the total market. This is why technologies aimed at decreasing time-to-market are of increased
importance to all commercial developers. Analysis is available showing the amount of development time

1011

© 2001 by CRC Press LLC

saved as a result of digital system modeling and simulation [Donnelly, 1992]. At a lower level, cost-
sensitive design has two significant issues: learning curve and packaging.

The learning curve itself is best described as an increase in productivity over time. For device manu-
facturing this can be measured by change in yield, the percentage of manufactured devices that survive
testing. Whether it is a chip, a board, or a system, given sufficient volume, designs that have twice the
yield will generally have half the cost [Hennessy and Patterson, 1990]. The design reuse inherent in digital
modeling and simulation directly shortens the learning curve. Packaging at the device, board, or system
level has cost implications related to fundamental design correctness and system partitioning. A case
study of performance modeling for system partitioning is presented later in this text.

For military systems designers, many of the same issues affecting commercial systems designers apply,
especially, as more commercial technologies are being incorporated as implementation components.
Additionally, as will be shown below, mission objectives and operational requirements are the correct
point of entry for modern, top-down design paradigms. However, once a development effort has been
initiated, the relative cost of error discovery (shown notionally in Figure 20.1) is more expensive at each
successive level of system completeness. Thus, a low-price solution which does not fully meet system
requirements can turn into a high-cost problem later in the development cycle.

20.2.3 Design Perspective

Bell and Newell divided computer hardware into five levels of abstraction [Bell and Newell, 1973]. The
levels are processors-memory switches (system), instruction set (algorithm), register transfer, logic, and
circuit. Hardware systems at any level can also be described by their behavior, structure, and physical
implementation. Walker and Thomas combined these views and proposed a model of design represen-
tation and synthesis [Walker and Thomas, 1985]. The levels are defined as the architecture level (system
level), algorithmic level, functional block level (register transfer level), logic level, and circuit level. Each
of these levels is defined in terms of their behavioral domain, structural domain, and physical domain.
Behavioral design describes the behavior or function of the hardware using such notations as behavioral
languages, register transfer languages, and logic equations. Structural design specifies functional blocks
and components such as registers, gates, flip-flops, and their interconnections. Physical design describes
the implementation of a design idea in a hardware platform, such as the floor plan of a circuit board
and layout of transistors, standard cells, and macrocells in an integrated circuit (IC) chip.

FIGURE 20.1

Relative cost of defect discovery has been shown to increase as a factor of 10 at each successive level
of system completeness [Portelli et al., 1989].

Mission objective

System operational

System fielded

System integration

Subsystem integration

Module development

Chip development

System design

Sytem specificationLe
ve

l o
f s

ys
te

m
 c

om
pl

et
en

es
s

1 10 100 1,000 10,000 100,000 1,000,000

Cost to make changes

Relative costs

© 2001 by CRC Press LLC

Hierarchical design starts with high-level algorithmic or behavioral design. These high-level designs
are converted to circuits in the physical domain. Various CAD tools are available for design entry and
conversion. Digital modeling and simulation technologies and tools are directly incorporated into the
process to assure correctness and completion of the design at each level and to validate the accuracy of
the translation from one level to the next [Liu, 1992].

20.2.4 Market Perspective

It is generally assumed that there are two major market segments for avionics—the commercial avionics
market and the military avionics market. As stated earlier, there is great similarity in the technological
forces at work on both military and commercial systems. There are, however, several fundamental
differences in the product development cycle and business base that are important to consider because
they impact the interpretation of the cost performance analysis for modeling and simulation. These
differences are summarized in Table 20.1. Consider the impact of commercial versus military production
volumes on a capital investment decision for modeling and simulation technology. The relative priority
of this criterion is likely to differ for commercial products as compared to military systems.

20.2.5 Requirements in the Trade Space

Technology without application, tactical, or doctrinal context is merely engineering curiosity. The devel-
opment of an avionics suite, or the implementation of an upgrade to an existing set requires the careful
balance of many intricate constraints. More than any other type of development, avionics has the most
intricate interrelationships of constraints. The complex set of issues associated with volume, weight,
power, cooling, capability, growth, reliability, and cost create the most complex engineering trades of any
possible development outside the space program. The risks associated with the introduction of new
technologies and the development of enabling technologies create mitigation plans that look like parallel
developments. It is little wonder that avionics systems are becoming the most expensive portion of the
aircraft development.

To fully exploit the dollars available for avionics development, it is necessary to invest a significant
effort in an intimate understanding of the system requirements. Without a knowledge of what the pilot
needs to accomplish the mission, and how each portion of the system contributes to the satisfaction of
that need, it is impossible to generate appropriate trades and understand the impacts on the engineering
process. Indeed, often the mission needs are vague and performance requirements are not specified. This
critical feature of the development is further complicated by the fact that pilots often are unaware of
detailed technical features of the requirements set, and cannot specifically identify critical system infor-
mation or presentation requirements.

In the final analysis, the avionics suite is a tool used by the pilot to accomplish a task. The avionics
are an extension of his senses and his capabilities. They provide orientation, perception, and function
while he is attempting to complete an endlessly variable task. With this in mind, the first and most

TABLE 20.1

Market Factors Comparison for Commercial and Military Market

Segments. Each has a different relative priority for the given criterion

Criterion Commercial Military

Financial Basis Market Budget
Development Focus Product Capability
Production Volume Medium–High Low
System Complexity Medium High
System Design Cycle Short Medium–Long
System Life Cycle Short–Medium Long–Very Long
Contractual Concerns Warranty, Liability Reliability, Mortality

© 2001 by CRC Press LLC

important step in the design and development of an avionics package is the development of the
requirements.

20.2.6 Technical Underpinnings of the Practice

Allen defines the discipline for making predictions of system performance and capacity planning as
modeling [Allen, 1994]. He further categorizes techniques in terms of rules of thumb, back-of-the-
envelope calculations, statistical forecasting, analytical queuing theory modeling, simulation modeling,
and benchmarking. When applied intelligently, all methods have utility. Each has specific cost and
schedule impacts. For nontrivial modeling and simulation, the areas of analytical queuing theory mod-
eling, simulation modeling, and benchmarking have the greatest information content, while rules of
thumb often hold the most wisdom.

Analytical queuing theory seeks to represent the system algorithmically. The fundamental algorithm
set is the M/M/1 queuing system [Klienrock, 1975]. The M/M/1 queuing system is an open system
(implying an infinite stream of incoming customers or work) with one server (that which handles
customers or does the work) that provides exponentially distributed service. Mathematically, the prob-
ability that the provided service will require not more than t time units is given by:

where

S

 is the average service time.
For the M/M/1 queuing system, the interarrival time, that is, the time between successive arrivals, also

has an exponential distribution. Mathematically, this implies that if

�

 describes the interarrival time, then:

where

�

 is the average arrival rate.
Therefore, with the two parameters, the average arrival rate

�

 and the average service time

S

, we
completely define the M/M/1 model.

Simulation modeling is defined as driving the model of a system with suitable inputs and observing
the corresponding outputs [Bratley et al., 1987]. The basic steps include construction of the model,
development of the inputs to the model, measurement of the interactions within the model, formation
of the statistics of the measured transactions, analysis of the statistics, and validation of the model.
Simulation has the advantage of allowing more detailed modeling and analysis than analytical queuing
theory, but has the disadvantage of requiring more resources in terms of development effort and computer
resources to run.

Benchmarking is the process of running specialized test software on actual hardware. It has the
advantage of great fidelity in that the execution time associated with a specific benchmark is not an
approximation, but the actual execution time. This process is extremely useful for comparing the results
of running the same benchmark on several different machines. The primary disadvantages include
requiring actual hardware, which is difficult if the hardware is developmental, and unless your application
is the benchmark, it is not likely to represent accurately the workload of your specific system in operation.

20.2.7 Summary Comments

Historically there have been dramatic increases in the complexity and performance of digital avionics
systems. This increase in complexity has required many new tools and processes to be developed in
support of avionics product design, development, and manufacture.

The commercial and military avionics marketplaces differ in many ways. Decisions made quantitatively
must be interpreted in accordance with each marketplace. However, both commercial and military markets
have economic forces which have driven the need for shorter development cycles. A shorter development

P S t�[] 1 e t�s�
��

P � t�[] 1 e �t�
��

© 2001 by CRC Press LLC

cycle generally stresses the capabilities of design technology. Thus, both markets have similar digital system
design process challenges. In fact, current policies mandate increased use of COTS products instead of
ruggedized versions, and fewer military standards, generally replacing them with “best practices.” As this
trend continues, there exists potential for both markets to converge on common solutions for these
challenges.

The most general design cycle proceeds from a concept through a design phase to a prototype test
and integration phase, ending finally in release to production. The end date (be it a commercial product
introduction or a military system deployment) generally does not move to the right on the schedule.
Designs often take longer than scheduled due to complexity and coordination issues. The time between
prototype release to fabrication and release to production, which should be spent in test and debug, gets
squeezed. Ideally, lengthening the test and debug phase without compromising either design time or the
production release date is desirable. Modeling and simulation does this by allowing the testing of designs
before they are fabricated, when they are easier, faster, and cheaper to change.

The design process for any avionics development must begin with the development of the requirements.
A full understanding of the requirements set is necessary because of the inherent constraints it places on
the development and the clarity it provides as to the intended use of the system.

There are several techniques available for the analysis and prediction of a system’s performance. These
techniques include rules of thumb, back-of-the-envelope calculations, statistical forecasting, analytical
queuing theory modeling, simulation modeling, and benchmarking. Each technique has advantages and
disadvantages with respect to fidelity and cost of resources to perform. When taken together, and applied
appropriately, they form the rigor base for the best practices in digital avionics systems modeling and
simulation.

20.3 Best Practices

As the fundamental principle of modeling and simulation suggests, a correctly executed simulation of
any model may yield results that are correct but irrelevant. Therefore, it is imperative to understand the
customers, the systems, the allocation of requirements to system components, the performance of the
system components, and to be able to trace component performance to system performance to customer
requirements. To date, there exists no single development environment that encompasses this complete
set of issues. Several discrete development environments and tools do exist. They are maturing at a rapid,
although separate, rate, and tend to either complement or overlap each other. As these environments
and tools, as well as the design and economic forces, continue to advance, increased use and decreased
cost of entry for avionics systems designers will prevail. Presented below are summaries of best practices
in requirements engineering and top-down system simulation.

20.3.1 Requirements Engineering

The process of requirement development for an avionics suite begins with the definition of the mission(s)
and related requirements. Once the requirements are known, metrics can be assigned for mission utility
of the various systems and subsystems involved in the development. This is essential, because the results
of the requirements process are not always consistent with the engineering expectations. That is to say,
the modeling and simulation process often uncovers operations and relationships that generate unex-
pected results. The identification and quantification of these metrics is essential to successfully navigate
the complex trade space that is inherent in the development of avionics.

The effective generation of user requirements is the first step in the process. Ordinarily the user provides
an initial cut at an unconstrained requirements set. The initial set of requirements needs to be validated
through a simulation. Ideally, the user has correctly identified the set of unconstrained requirements that
will yield the most effective utilization of the systems. If the current set of requirements yields the
maximum capability, the task of the simulation process is to measure the decrease in effectiveness
associated with the relaxation of each of the requirements parameters. If the current set of requirements

© 2001 by CRC Press LLC

is not optimum, then perturbation of system parameters will yield increases in unconstrained perfor-
mance. In any event, the relationship between the system parameters and operational effectiveness needs
to be well established before beginning any system trade activities.

At the completion of the initial assessment of the requirements, further definition of the requirements
trade space requires the definition of mission scenarios for evaluation with relaxed requirement sets. The
evaluation of mission performance at this level is associated with changes of requirements in association
with each other. Changing the system performance parameters at various levels of requirements provides
insight into the best starting point for in-depth study of engineering trades. In many instances, this
evaluation is done on the basis of total avionics system costs.

Validating the requirements of avionics design by modeling and simulation depends on the validity
of the simulations used. In effect, the simulations need to be calibrated to enable a valid trade study.
There are several methods of validating the simulations. Many of the approved operational models are
accepted as valid requirements generators, but all models need volumes of approved scenarios, threats,
and concepts of operation to be valid.

The design of the avionics suite is intimately related to the design of the cockpit and the displays. In
earlier designs, the capabilities of the presentations were often limited by the system elements. The
integrating element was the pilot, who received most of the data generated by the avionics. Today,
presentation has a significant impact on the performance of the avionics suite. In fact, the presentation
requirements for the pilot can be viewed as the requirements for generation of information from the
avionics. Determination of presentation necessitates simulation of some kind. This is the integration
phase of the requirements with the operator.

Man-In-The-Loop (MITL) simulation is the most reliable means of determining presentation require-
ments. These can be part-task, or full-mission simulations that drive both presentation and capability
requirements. MITL simulation is very expensive, but depending on the implementation, can yield a
concise evaluation of the requirements set. There are many disciplines involved in the conduct of human
factors engineering, and those references should be consulted. The essential point is that MITL simulation
at some level of fidelity is required to fully validate the requirements set.

Sometimes the system requirements can be estimated with a Simulated-Man-In-The-Loop (SMITL)
simulation. Working models of human performance exist at several levels of fidelity. Many of these models
are adept at working with human-directed control applications, and should be evaluated if the design of
the system is attempting a control implementation. The existing models are currently less than satisfying
on the cognitive modeling of pilots in flight, however, several attempts are being made to develop cognitive
models that will allow a much broader application of SMITL simulation.

In summary, the definition of the requirements determines the effectivity of the avionics suite. Avionics
designers continue to shed the constraints imposed by technology over the years. The developments of
the year 2000 and beyond will be less constrained by the technology, and the effectiveness will be
determined by the application of the concepts for employment. A unique and especially potent display
is as effective as a new type of circuit that improves receiver sensitivity. Avionics designs of the 21

st

 century
will be based on thorough analysis of requirements, not technological innovations.

20.3.2 Top-Down System Simulation

The Top-Down System Simulation (TDSS) is a proven risk reduction methodology that applies top-down
design techniques and currently available simulation technology during development to ensure that
complex systems perform correctly the first time. The benefits of applying this methodology range from
lower overall cost by eliminating avoidable refabrication of hardware, to on-time schedule performance
resulting from the increased visibility into hard-to-foresee integration problems. Together, these benefits
frequently outweigh the initial cost of instituting a program-wide TDSS process. Its other far-reaching
benefits include the resolution of specification ambiguities, validation of the hardware to specification,
and implementation of manufacturing, logistics, and reprocurement documentation that is technology
independent.

© 2001 by CRC Press LLC

Until recently, the typical design process began by generating specifications to describe the system,
subsystem, component, and interface requirements. Then the system design was partitioned into func-
tions and the functions partitioned into hardware and software. During development, the hardware and
software components were developed individually, and then brought together when the system was
integrated. In most cases, the final integration step, when discrepancies between concept and implemen-
tation were discovered, turned out to be the schedule driver. This was true because issues had to be
resolved that were unforeseen, and thus not planned for.

The TDSS methodology is designed to incorporate the best features of the typical development cycle
and to add additional visibility and risk reduction to the schedule-driving integration phase. This is
accomplished by using simulation techniques that allow a “virtual” integration of component models
to be performed while the design is still on the drawing board and easy to change. This virtual
integration eliminates the costly hardware refabrication that is frequently required when problems are
not discovered until the hardware is in the lab. It also drastically reduces the time spent in the lab
integrating the hardware and software, because many of the problems have already been discovered
and corrected during development. Examples of this methodology include the U.S. Air Force Advanced
Tactical Fighter (ATF) Demonstration and Validation (DEM-VAL) development effort. The interop-
erability of designs of five critical interfaces were tested through simulation. Over the five interfaces
involved, the testing revealed over 200 problems, both with the designs and with the specifications on
which they were based. These problems would have resulted in many iterations of hardware fabrication
during the integration phase, and several of them would probably not have been detected until the
system was fielded. The Air Force concluded that the application of a TDSS methodology to the DEM-
VAL program alone resulted in a cost avoidance of approximately $200 million, 25 times the cost of
the initiative itself.

20.3.3 TDSS Plan

A formal TDSS plan must be implemented at the very start of any development program with the
agreement of all design and development participants. This plan must define the goals of TDSS on the
program and the means by which these goals will be reached. For example, a specific goal may be to
reduce the risk of subsystem integration through the use of modeling and simulation. The plan will
define how this may be attained through the use of commercial logic simulators, off-the-shelf third-party
behavioral models, and contractor design databases to perform virtual integration before the costs for
hardware fabrication are incurred.

The TDSS plan will define the process, milestones, and data interchange mechanisms that will be
required to achieve all of the stated TDSS goals. It will define the tasks to be performed, which Integrated
Product Team (IPT) is to perform them, and to which IPT the results will be provided. In a hypothetical
example, the Computer Development IPT provides design data and simulation analysis results that prove
that all required functions are performed correctly and within the maximum allowable time. These results
are passed to the System IPT (at higher level than the Computer Development IPT), who will use these
results together with the results of other development IPTs to assess whether all components of the system,
when integrated, will meet the functional requirements.

Since modeling and simulation are integral to the development process, they must not be considered
as unusual or extra. Accordingly, the milestones defined in the plan are the typical development mile-
stones, such as the Preliminary Design Review (PDR) and the Critical Design Review (CDR) for each
component, board, subsystem, etc. This will ensure that the data made available by the TDSS process
are used in the most effective possible manner. This means that one development phase will not be
officially complete without first meeting all TDSS milestones for that phase. The intent is to prevent
taking shortcuts around the process in the “rush to fabrication.”

For example, the pre-CDR TDSS phase may require that the hardware be simulated at a predetermined
level of abstraction prior to fabrication. The hardware cannot be released for fabrication if the TDSS results
are not available or the results do not prove that the functional requirements are being met. If the plan has

© 2001 by CRC Press LLC

been agreed to up front by all concerned, then there should not be any surprises or additional effort that
might increase the schedule. Even if there is additional effort required, the program will save significant
refabrication and rework costs as well as integration costs.

Finally, the data formats to be exchanged between IPTs must be defined and agreed upon by repre-
sentatives of the customer, the prime contractor, and appropriate subcontractors. For example, the plan
might define the contents of the design database that will be supplied to the IPTs that are designing
related components. So when information passes between the Computer Development IPT and the Signal
Conditioning IPT, each group can effectively make use of the data. The intent is to meet the goals of the
TDSS process by eliminating ambiguity and/or extra translation steps wherever possible.

It is imperative to prevent inadvertent divergence from the intent of the design. As the design proceeds
from the abstract to the concrete, there are definite points at which the level of abstraction incrementally
transitions from a higher level to the next lower level. Before that transition is allowed, the design at each
stage of abstraction must be verified and validated.

20.3.4 TDSS Process

The digital electronic hardware development program should proceed hierarchically in the same fashion
as the system is arranged. First, the overall system must be defined, modeled, and simulated. Once the
system-level model is verified, it can be decomposed into subsystems (functions), each of which must
be defined, modeled, simulated, and verified. The subsystems are decomposed into circuit boards
containing components of various types (custom, common, standard, and COTS). Each element (sub-
system, board, component) at each level of hierarchy will have its own development flow, which will
resemble the development flow of the overall system. Figure 20.2 shows a typical development process.
At the start of the program the system architects draft the system specification and codify the require-
ments while the design management team develops the overall top-down development program in the
TDSS plan. At the System Requirements Review (SRR) milestone, the team agrees on what needs to be
designed to meet the needs of the program. After SRR, the team finalizes the system specification and
develops a series of models that describe the performance, behavior, and functions of the system. These
models will be the unambiguous reference point for the design since they represent the consensus of
the system architects as to what the system should do and how it should be partitioned. The models
are formally approved at the System Design Review (SDR) so they can also be used to evaluate the
technical soundness of architectures proposed by potential subcontractors in response to a Requests for
Proposal.

Once the system is partitioned into subsystems, detailed design work begins. Using the SDR approved
models, the team develops Machine Executable Specification (MES) versions. These MESs are distributed
to the members of the hardware design team, who use them to construct and verify architectural and
performance models of the major subsystems. The subsystem models will be integrated to create perfor-
mance and architectural models of the entire system. The system architects will review these models and
verify their correctness with respect to the requirements. The hardware designers will use the system and
subsystem models and the appropriate MESs to begin the preliminary design work. They will define the
system at further levels of hierarchical detail, including boards/LRUs, interfaces, modules, and compo-
nents. They will build gradually to fully functional behavioral models of the system. In order to pass
PDR successfully, they must verify that the behavioral models produce the same results as the system
performance and architectural models. Once this is accomplished, detailed design work can begin.

The process repeats at the structural level, where the hardware designers are building gate-level models
of new components and integrating them with behavioral or structural models of existing or COTS
equipment. Once again, the exit criteria for CDR is that these detailed models produce the results that
match those produced by the PDR models. Once that is verified, hardware can be fabricated with a high
degree of confidence. The hardware must be verified against the models. If there is a discrepancy, the
hardware must be made to match the model, not the other way around. The hardware is a technology-
specific implementation of the design and, as stated previously, the models are the design.

© 2001 by CRC Press LLC

If everything has been done properly, the lowest-level models (and the hardware) will produce results
that are traceable back through the design chain all the way to the system specification.

Experience on many programs has shown that the vast majority of system defects can be traced back
to misunderstandings due to ambiguity in the specifications. These misunderstandings arise because
different hardware designers interpret specifications in completely logical but, unfortunately different,
perhaps erroneous, ways. The errors are often not discovered until hardware is actually built and tested.
By this time, schedule and budgetary pressures usually preclude leisurely analysis and re-design. So a
“workaround” is sought that will overcome the problem, but always at a compromise to system performance.

FIGURE 20.2

TDSS hardware development flow.

Program Start

Draft System Specification (A)

Requirements Analysis

TDSS Program Plan

Final System Specification (B)

Hardware Development Plan --

Establish a Team Hardware Design Environment
Establish a Team Model Library

System Performance Models

System Behavioral Models

System Architectural Models

Identify Interfaces and Components

Machine-Executable Specifications
of Critical Interfaces

Behavioral Models of Components, Modules, LRUs

Test Plan, Acceptance Test (Simulate)

Gate-Level Models of Components, Modules, LRUs

Test Plan, Acceptance Test (Simulate)

Build Prototype System

Verify Hardware to Models

Maintain Models, Final Configuration Audit

SRR

SDR

PDR

CDR

FCA, PCA

© 2001 by CRC Press LLC

If a workaround cannot be found, then the program must suffer adverse budget or schedule impacts,
often both.

One novel aspect of TDSS eliminates the ambiguous specifications and their associated dangers right
from the start. Since a specification is meant to convey the behavior of something, the best way to do
that is to provide a readable description that can also be executed on a computer to provide a demonstrable
and verifiable example of the behavior being described. A simulation model (written correctly) can be
an unambiguous medium in which to embody a specification. A machine-executable specification (MES)
is unambiguous because its behavior can be observed under a variety of conditions. The hardware designer
does not have to interpret the specification because the behavior can be observed instead. So, if all
hardware developers use the same (unambiguous) executable model, they are likely to have the same
fundamental understanding of the specification.

20.3.5 Software Modeling in TDSS

A complete system depends on software as well as hardware, and system software design can make or
break any system—in performance, schedule, and cost. Good software can bring out the best in mediocre
hardware, but poor software can bring excellent hardware to its knees.

Hardware and software are the same at all but the lowest implementation level. Indeed, system speci-
fications and requirements are (theoretically) drawn up with no thought as to hardware/software parti-
tioning. Before software-programmable computers were invented, everything was done in hardware. As
software execution speeds increased, more time-critical functions could be handled in software, but from
a system standpoint, whether a function is performed by pure hardware or is embedded in code is
immaterial as long as the requirements are met and the missions can be achieved. Any complete system
design effort must take into account the adequacy or inadequacy of software performance. To verify the
adequacy of the “other half” of the system, software performance modeling and analysis should:

1. Account for processing delays on the system or subsystem architecture.
2. Assess the compatibility and portability of software to COTS platforms.
3. Assess the impact of Open Systems Architecture (OSA) requirements on software performance

and subsystem interoperability.

Software architecture and performance can be modeled just as hardware can. In both cases, the focus
is on input and output rates and amounts, latency (response time), senescence (data age), efficiency, and
correct results.

20.4 Performance Modeling for System Partitioning

(A Case Study)

The following case study describes a practical application of modeling and simulation used to both
articulate and answer system-level questions regarding data latency such that system functional parti-
tioning may be accomplished. Figure 20.3 represents a modern integrated avionics architecture. The
system is intended to be fabricated with COTS components and is generalized to include connectivity
to existing legacy subsystems.

20.4.1 System Description

This architecture includes the following functional components: Sensor Front Ends representing mul-
tiple sensors that receive signals and accomplish analog signal processing; Embedded Computing Assets
consisting of computing assets, closely coupled to the sensor front ends, that perform low-latency control
processing, digital signal processing, and prepare data for transmission; an ATM Dataflow Network
serving as the data transfer medium upon which data are transferred between Embedded Computing
Assets, Core Computing Assets, Operator Workstations, and the LAN Gateway; Core Computing Assets

© 2001 by CRC Press LLC

which include computing and memory devices used to perform application programs and services such
as database and maintenance functions; and Operator Workstations servings as the man-machine inter-
face. Additionally, there are recording and storage assets, maintenance, calibration, and control assets, as
well as platform-specific and time/navigation assets. Finally, there is the LAN Gateway which serves as
the interface to Legacy Systems and networks.

Given the above architecture, the system designer must determine where to allocate software processes
that operate on incoming sensor data. The designer must determine which processes are mission critical,
which are low-latency processes and which processes are non-low-latency processes that could be
allocated to application software. Can the designer allocate all processes to the Core Computing Assets
and use the core as a server? What processes, if any, should remain in computing assets local to the
incoming sensor data? Is there any incoming sensor data that have to be processed within a time
constraint for a successful mission? None of those questions can be answered until a fundamental
question is first addressed. Given that a data packet is stored in the RAM of the Embedded Computing
Assets, what is the latency associated with that packet’s transfer from Embedded Computing Asset RAM,
across the ATM Dataflow Network, to Core Computing Asset RAM, and back to Embedded Asset RAM
traversing the same path?

The example Embedded and Core Computing Assets each consist of a dual VME 64 backplane
configuration, real-time Concurrent Maxion board set (including four 200-MHz R4400 CPU cards
[XPU] with 128 MB of RAM per CPU, an I/O card [XIO] conforming to VME 64 standards, and a
crosspoint switching architecture capable of 1.2 GB/s peak), and two Fore Systems ATM to VME adapter
cards supporting OC-3 155 MB/s SONET fiber (one of these cards is used for redundant purposes
only). The Embedded Computing Assets also included MIL-STD-1553, IRIG B, and MXI cards. The
Core Assets also include MIL-STD-1553, IRIG B, and SCSI-compatible VME cards. The ATM Dataflow
Network (DFN) consists of a Fore Systems ASX-200BX 16-port switch capable of switching up to 1.2
GB/s data across a nonblocking switch fabric. This switch is used to connect the ATM adapter cards
using OC-3 155 MB/s SONET fiber. The system is decomposed into the component block diagram
shown in Figure 20.4. This is the component block diagram that was used as the basis for a performance
model.

FIGURE 20.3

 A generalized integrated avionics architecture.

Maintenance/ Calibration/ Status/ Control

Time / Nav

Platform

LAN
Gateway

Recording and Storage
Post-

Mission
Analysis

Core
Computing

Assets

Applications
Databases

Maintenance

ATM
Dataflow Network Integrated Digital

Processing System
(IDPS)

Embedded
Computing

Assets

Low Latency
Processing IDPS Operator

Workstations

Sensor
Front
Ends

Data
Acquisition

Legacy
Assets

(Processing)

Legacy
Assets

(Sensors)

© 2001 by CRC Press LLC

20.4.2 Model Development

Modeling and simulation of the system was accomplished using a commercial computer-aided engineer-
ing (CAE) tool (the OPNET modeling tool from Mil-3). This tool is an event-driven simulation tool
particularly well suited for computer and network modeling. The tool utilizes hierarchical domains defined
as Network, Process, and State domains. A Network domain model for the system was built using the
Component Block Diagram shown in Figure 20.4. The Network domain of OPNET allows the specification
of nodes and selection and modeling of data transfer pipes (OC-3 SONET, Ethernet, etc.). The Process
domain allows the modeler to break down each network node into a configuration of queues, processors,
transmitters, receivers, and packet generators. The State domain of the tool allows each processor and
queue to be further decomposed into states, with definable transitions between states. Each state of a
particular process is defined using C-based programming and simulation kernel calls to simulate the
behavior of the process when it arrives at that state. To this end, any protocol behavior can be modeled
with the proper combination of states and state behavior definitions. The tool also allows the modeler to
probe the simulation at any point in the model to take measurements (throughput, queue capacities,
delays, etc.) and analyze the results of these probes while the simulation is running. The system was
broken down into modeled components as shown in Figure 20.5 below.

The model for the system was set up to transmit packets (1024 bytes) from RAM located in the
Embedded Computing Assets, across the ATM DFN, to the RAM located in the Core Computing Assets,
and then back to the RAM of the Embedded Computing Assets via the same path. During the simulation,
the computing assets and ATM DFN were loaded at various levels with other data (a known characteristic
of the real system was that other data with specific size and frequency rates would also be utilizing the
ATM DFN and computer resources at various points throughout the system).

Insertion of these data at various points throughout the model was achieved using the modeling tool’s
generator modules. This allowed the model to be data loaded at various points in a manner consistent
with how the real system would be data loaded during normal operation. For this system, the known
system characteristics and protocols explicitly modeled in this example include but are not limited to:
I/O read and write delays to/from the Core Computing Assets, CPU wait cycles due to caching operations,
crosspoint architecture arbitration, TCP/IP protocol overhead and buffering operations, VMEbus pro-
tocol including service interrupt and acknowledgment and delays associated with the various addressing
modes of VME operation, ATM segmentation and reassembly delays, ATM call setup delays, ATM fabric
switching, and output port buffer delays.

Also included in the model were known data sources that were used to simulate other traffic on the
ATM Dataflow Network. A file of System Loading Parameters was also developed made up of a collection
of all the modeling parameters available. These include, but were not strictly limited to VMEbus addressing
mode, TCP socket buffer thresholds, ATM switching delay parameters, SONET data transport overhead,

FIGURE 20.4

 Component block diagram.

VMEbus
TRANSFER

VME/ATM
INTERFACE

VMEbus
TRANSFER

VME/ATM
INTERFACE

ATM SWITCH
& SONET

One Way

Round TripRound Trip

MAXION
RAM to
VMEbus

INTERFACE

MAXION
RAM to
VMEbus

INTERFACE

One Way One Way

© 2001 by CRC Press LLC

proprietary communications layer overhead, and many others. The simulation was run 10 times with
the System Loading Parameters held constant. The average latency over the 10 simulation runs was plotted
as a function of those parameters. The parameters were changed, and another 10 simulations were run
at that particular level of system loading. System Loading Parameters were varied from 0.5 to 1.0 in
increments of 0.5.

FIGURE 20.5

 Modeling decomposition process includes component to network to process to state diagram deveopment.

© 2001 by CRC Press LLC

20.4.3 Modeling Results

The modeling simulation results are shown in Figure 20.6. Each point on the plot represents 10 simulation
runs. During each simulation run, the average round trip latency for the target data packets was measured.
In a lightly loaded system, according to the simulation results, the target data could be expected to traverse
the round trip path presented earlier in an average time of time of 0.001444 s. In a heavily loaded system,
again using the simulation results, the data packets experienced a latency of up to 0.150140 s. This was
the maximum result just prior to 1.0 loading.

These results were provided to the system designer as performance-based partitioning data and were
used to allocate system functions between the Embedded Computing Assets and the Core Computing
Assets.

20.4.4 Summary

The actual modeling and simulation effort that formed the basis for this case study was performed as
part of a functional allocation process for an airborne system. The results allowed for system partitioning
around a 150-ms boundary. By determining the latency early in the design phase, the design could be
optimized to make best use of the available processing assets and avoid costly reallocations later in the
system development.

This example further demonstrated several advantages to modeling and simulation of a system vs.
“vendor data sheet” calculations. First, vendors often times report “best case” or “burst mode” per-
formance characteristics. Modeling and simulation allows parameters of the system to be varied such
that “heavily loaded” or “degraded performance” modes of the system may be investigated. Another
distinct advantage is that the model is able to generate synchronous data, asynchronous data, and
data based on probability distributions. Data latencies in the model are based on modeled event-
triggered protocol disciplines rather than deriving answers on a calculator or spreadsheet. Not every
aspect of a real system can be modeled completely in every tool, but the known characteristics of the
system that relate to performance form a quality model for performance estimation in a tool as was
used here.

FIGURE 20.6

 Case study simulation results.

System Load
Parameters

RAM to RAM
Latency

0.05 0.001444
0.10 0.010342
0.15 0.015953
0.20 0.027908
0.25 0.034309
0.30 0.039111
0.35 0.041234
0.40 0.043421
0.45 0.053901
0.50 0.059921
0.55 0.062344
0.60 0.063495
0.65 0.067401
0.70 0.075105
0.75 0.091120
0.80 0.099101
0.85 0.115230
0.90 0.136987
0.95 0.142335
1.00 0.150428

RAM to RAM Latency

0.000000

0.020000

0.040000

0.060000

0.080000

0.100000

0.120000

0.140000

0.160000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Compound System Loading

S
ec

o
n

d
s

© 2001 by CRC Press LLC

20.5 Research Issues and Summary

As mentioned above, not every aspect of a real system can be modeled completely in every tool, but the
known characteristics of the system that relate to performance form a quality model for performance
estimation. Clearly, market forces will continue to drive the quantity, quality, completeness, and rate of
change of system engineering environments. As a practical matter, better integration and traceability
between requirements automation systems and system/software engineering environments are called for.
A powerful result of this integration will be the improved traceability between proposed system concepts,
their driving requirements, the resultant technical configuration(s), and their cost and schedule impacts.

The requirement to integrate the trade space across technical, program, financial, and market boundaries
is likely to continue and remain incomplete. To paraphrase Brooks, there is more common ground than
the technical community will admit, and there are differences that most managers do not understand
[Brooks, 1995]. Automation alone will not reduce the complexities of this effort until there is a common,
multidisciplined, quantitative definition of cost vs. price in system performance trades. As to the automa-
tion issue, the size, content, and format issues of current and legacy technical, financial, programmatic
data bases will continue to grow and diverge until the stewards of college curricula produce graduates
that solve more problems than they create [Parnas, 1989]. These new practitioners will develop future
information systems and engineering environments which encompass the disciplines, language(s), and
methods critical to the practice.

Defining Terms

ATM

: Asynchronous Transfer Mode

CAD

: Computer Automated Design

CAE

: Computer-Aided Engineering

CDR

: Critical Design Review

COTS

: Commercial-off-the-shelf (products)

FCA

: Functional Configuration Audit

MES

: Machine Executable Specifications

MIPS

: Millions of instructions per second, or, misleading indicator of processor speed

MITL

: Man-in-the-loop

OC“n

”: Optical Carrier Level n (i.e., OC-3, a SONET specification)

OSA

: Open Systems Architecture

PCA

: Physical Configuration Audit

PDR

: Preliminary Design Review

RAM

: Random Access Memory

SDR

: System Design Review

SMITL

: Simulated-man-in-the-loop

SONET

: Synchronous Optical Network

SRR

: System Requirements Review

TDSS

: Top Down System Simulation

References

Allen, Arnold O., 1994.

Computer Performance Analysis with Mathematica.

 Academic Press, New York.
Bell, C. G. and Newell, A., 1973.

Computer Structures: Readings and Examples.

 McGraw-Hill, New York.
Bratley, P., Fox, B., and Schrage, L., 1987.

A Guide to Simulation,

 2nd ed., Springer-Verlag, New York.
Brooks J.R. and Fredrick P., 1995.

The Mythical Man Month.

 Addison-Wesley, Reading, MA.
Donnelly, C. F., 1992. Evaluating the IOBIDS Specification Using Gate-Level System Simulation, in

Proc.
IEEE Natl. Aerosp. Electron. Conf.,

 p. 748.
Hennessy, J. L. and Patterson, D. A., 1990.

Computer Architecture: A Quantitative Approach.

 Morgan
Kaufmann, San Francisco, CA.

© 2001 by CRC Press LLC

Kleinrock, L., 1975. Theory,

Queueing Systems,

 Vol. 1, John Wiley & Sons, New York.
Liu, Hsi-Ho, 1992. Software Issues in Hardware Development, in

Computer Engineering Handbook.

McGraw-Hill, New York.
Parnas, D. L., 1989. Education for Computing Profressionals, in Tech. Rep. 89-247 ISSN-0836-0227.
Portelli, W., Oseth, T., and Strauss, J. L., 1989. Demonstration of Avionics Module Exchangeability via

Simulation (DAMES) Program Overview, in

Proc.

IEEE Natl.

Aerosp.

Electron.

Conf.,

 pp. 660.
Strauss, J. L., 1994. The Third Possibility, in

Modeling and Simulation of Embedded Systems,

 Proc. Embed-
ded Computing Inst., pp. 160.

Swangim, J., Strauss, J. L., et al., 1989. Challenges of Tomorrow—The Future of Secure Avioncs, in

Proc.
IEEE Natl. Aerosp. Electron. Conf.,

 pp. 580.
Walker, R. A. and Thomas, D. E., 1985. A Model of Design Representation and Synthesis, in

Proc. 22nd
Design Automation Conf

.

,

 pp. 453–459.

Further Information

Arnold Allen’s 1994 text,

Computer Performance Analysis with Mathematica,

 Academic Press, New York,
is an excellent introduction to computing systems performance modeling.

For Performance Modeling and Capacity Planning the following organizations provide information
through periodicals and specialized publications:

• The Computer Measurement Group (CMG); 414 Plaza Drive, Suite 209, Westmont, IL 60559,
(708) 655-1812

• Institute for Capacity Management; P.O. Box 82847, Phoenix, AZ 85071, (602) 997-7374

• ACM Sigmetrics; 11 West 42nd Street, New York, NY 10036, (212) 869-7440

For Computer-Aided Engineering the following list of World Wide Web sites provide information on
vendors of major tools and environments:

• www.zycad.com

• www.mil-3.com

• www.mentorgraphics.com

• www.synopsis.com

• www.rational.com

