
//integras/b&h/Eer/Final_06-09-02/part

Section A 

General Principles 



//integras/b&h/Eer/Final_06-09-02/part



//integras/b&h/eer/Final_06-09-02/eerc001

1 
Units, 
Mathematics and 
Physical 
Quantities


1.1 1/3 
1.1.1 1/3 
1.1.2 1/3 
1.1.3 Notes 1/3 
1.1.4 1/3 
1.1.5 1/4 
1.1.6 1/4 
1.1.7 1/4 

1.2 Mathematics 1/4 
1.2.1 1/6 
1.2.2 1/7 
1.2.3 1/9 
1.2.4 Series 1/9 
1.2.5 1/9 
1.2.6 1/10 
1.2.7 1/10 
1.2.8 1/10 
1.2.9 1/13 
1.2.10 1/13 

1.3 1/17 
1.3.1 Energy 1/17 
1.3.2 1/19 

1.4 1/26 

1.5 Electricity 1/26 
1.5.1 1/26 
1.5.2 1/26 
1.5.3 1/28 

M G Say PhD, MSc, CEng, ACGI, DIC, FIEE, FRSE 
Formerly of Heriot-Watt University 

M A Laughton BASc, PhD, DSc(Eng), FREng, 
CEng, FIEE 
Formerly of Queen Mary & Westfield College, 
University of London 
(Section 1.2.10) 

Contents 

International unit system 
Base units 
Supplementary units 

Derived units 
Auxiliary units 
Conversion factors 
CGS electrostatic and electromagnetic units 

Trigonometric relations 
Exponential and hyperbolic relations 
Bessel functions 

Fourier series 
Derivatives and integrals 
Laplace transforms 
Binary numeration 
Power ratio 
Matrices and vectors 

Physical quantities 

Structure of matter 

Physical properties 

Charges at rest 
Charges in motion 
Charges in acceleration 



//integras/b&h/eer/Final_06-09-02/eerc001



//integras/b&h/eer/Final_06-09-02/eerc001

This reference section provides (a) a statement of the 
International System (SI) of Units, with conversion factors; 
(b) basic mathematical functions, series and tables; and 
(c) some physical properties of materials. 

1.1 International unit system 

The International System of Units (SI) is a metric system 
giving a fully coherent set of units for science, technology 
and engineering, involving no conversion factors. The starting 
point is the selection and definition of a minimum set of inde-
pendent `base' units. From these, `derived' units are obtained 
by forming products or quotients in various combinations, 
again without numerical factors. For convenience, certain 
combinations are given shortened names. A single SI unit of 
energy (joule �( kilogram metre-squared per second-squared) 
is, for example, applied to energy of any kind, whether it be 
kinetic, potential, electrical, thermal, chemical . . . , thus unify-
ing usage throughout science and technology. 
The SI system has seven base units, and two supplement-

ary units of angle. Combinations of these are derived for all 
other units. Each physical quantity has a quantity symbol 
(e.g. m for mass, P for power) that represents it in physical 
equations, and a unit symbol (e.g. kg for kilogram, W for 
watt) to indicate its SI unit of measure. 

1.1.1 Base units 

Definitions of the seven base units have been laid down in 
the following terms. The quantity symbol is given in italic, 
the unit symbol (with its standard abbreviation) in roman 
type. As measurements become more precise, changes are 
occasionally made in the definitions. 

Length: l, metre (m) The metre was defined in 1983 as 
the length of the path travelled by light in a vacuum during 
a time interval of 1/299 792 458 of a second. 
Mass: m, kilogram (kg) The mass of the international 

prototype (a block of platinum preserved at the 
International Bureau of Weights and Measures, SeÁ vres). 
Time: t, second (s) The duration of 9 192 631 770 periods of 

the radiation corresponding to the transition between the two 
hyperfine levels of the ground state of the caesium-133 atom. 
Electric current: i, ampere (A) The current which, main-

tained in two straight parallel conductors of infinite length, of 
negligible circular cross-section and 1 m apart in vacuum, pro-
duces a force equal to 2 �( 10�7 newton per metre of length. 
Thermodynamic temperature: T, kelvin (K) The fraction 

1/273.16 of the thermodynamic (absolute) temperature of 
the triple point of water. 
Luminous intensity: I, candela (cd) The luminous intensity 

in the perpendicular direction of a surface of 1/600 000 m2 of a 
black body at the temperature of freezing platinum under a 
pressure of 101 325 newton per square metre. 
Amount of substance: Q, mole (mol) The amount of sub-

stance of a system which contains as many elementary entities 
as there are atoms in 0.012 kg of carbon-12. The elementary 
entity must be specified and may be an atom, a molecule, an 
ion, an electron . . . , or a specified group of such entities. 

1.1.2 Supplementary units 

Plane angle: �, �& . . . , radian (rad) The plane angle 
between two radii of a circle which cut off on the circumfer-
ence of the circle an arc of length equal to the radius. 
Solid angle: 
, steradian (sr) The solid angle which, having 

its vertex at the centre of a sphere, cuts off an area of the surface 
of the sphere equal to a square having sides equal to the radius. 

International unit system 1/3 

1.1.3 Notes 

Temperature At zero K, bodies possess no thermal 
energy. Specified points (273.16 and 373.16 K) define 
the Celsius (centigrade) scale (0 and 100�C). In terms of 
intervals, 1�C �( 1 K. In terms of levels, a scale Celsius 
temperature �& corresponds to (�&� 273.16) K. 
Force The SI unit is the newton (N). A force of 1 N 

endows a mass of 1 kg with an acceleration of 1 m/s2. 
Weight The weight of a mass depends on gravitational 

effect. The standard weight of a mass of 1 kg at the surface 
of the earth is 9.807 N. 

1.1.4 Derived units 

All physical quantities have units derived from the base and 
supplementary SI units, and some of them have been given 
names for convenience in use. A tabulation of those of inter-
est in electrical technology is appended to the list in Table 1.1. 

Table 1.1 SI base, supplementary and derived units 

Quantity Unit Derivation Unit 
name symbol 

Length metre 
Mass kilogram 
Time second 
Electric current ampere 
Thermodynamic 
temperature kelvin 

Luminous 
intensity candela 

Amount of mole 
substance 

Plane angle radian 
Solid angle steradian 
Force newton 
Pressure, stress pascal 
Energy joule 
Power watt 
Electric charge, 
flux coulomb 

Magnetic flux weber 
Electric potential volt 
Magnetic flux 
density tesla 

Resistance ohm 
Inductance henry 
Capacitance farad 
Conductance siemens 
Frequency hertz 
Luminous flux lumen 
Illuminance lux 
Radiation 
activity becquerel 

Absorbed dose gray 
Mass density kilogram per 

cubic metre 
Dynamic 
viscosity pascal-second 

Concentration mole per cubic 

m 
kg 
s 
A 

K 

cd 
mol 

rad 
sr 

kg m/s2 N 
N/m2 Pa 
N m, W s J 
J/s W 

A s C 
V s Wb 
J/C V 

s 

Wb/m2 T 
V/A 
 
Wb/A, V s/A H 
C/V, A s/V F 
A/V S 
�1 Hz 
cd sr lm 
lm/m2 lx 

s �1 Bq 
J/kg Gy 

kg/m3 

Pa s 
mol/ 
3metre m 

Linear velocity metre per second m/s 
Linear metre per second- m/s2 

acceleration squared 
Angular velocity radian per second rad/s 

cont'd 
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Table 1.1 (continued ) 

Quantity Unit Derivation Unit 
name symbol 

Angular radian per second-
acceleration squared rad/s2 

Torque newton metre N m 
Electric field 
strength volt per metre V/m 

Magnetic field 
strength ampere per metre A/m 

Current density ampere per square 
metre A/m2 

Resistivity ohm metre 
 m 
Conductivity siemens per metre S/m 
Permeability henry per metre H/m 
Permittivity farad per metre F/m 
Thermal 
capacity joule per kelvin J/K 

Specific heat joule per kilogram 
capacity kelvin J/(kg K) 

Thermal watt per metre 
conductivity kelvin W/(m K) 

Luminance candela per 
square metre cd/m2 

Decimal multiples and submultiples of SI units are indi-
cated by prefix letters as listed in Table 1.2. Thus, kA is the 
unit symbol for kiloampere, and mF that for microfarad. 
There is a preference in technology for steps of 103. 
Prefixes for the kilogram are expressed in terms of the 
gram: thus, 1000 kg � 1 Mg, not 1 kkg. 

Table 1.2 Decimal prefixes 

1.1.5 Auxiliary units 

Some quantities are still used in special fields (such as 
vacuum physics, irradiation, etc.) having non-SI units. Some 
of these are given in Table 1.3 with their SI equivalents. 

1.1.6 Conversion factors 

Imperial and other non-SI units still in use are listed in 
Table 1.4, expressed in the most convenient multiples or sub-
multiples of the basic SI unit [ ] under classified headings. 

1.1.7 CGS electrostatic and electromagnetic units 

Although obsolescent, electrostatic and electromagnetic 
units (e.s.u., e.m.u.) appear in older works of reference. 
Neither system is `rationalised', nor are the two mutually 
compatible. In e.s.u. the electric space constant is "&0 � 1, in 
e.m.u. the magnetic space constant is �0 � 1; but the SI units 
take account of the fact that 1/H("&0�0) is the velocity of 
electromagnetic wave propagation in free space. Table 1.5 
lists SI units with the equivalent number n of e.s.u. and 
e.m.u. Where these lack names, they are expressed as SI unit 
names with the prefix `st' (`electrostatic') for e.s.u. and `ab' 
(`absolute') for e.m.u. Thus, 1 V corresponds to 10�2/3 stV 
and to 108 abV, so that 1 stV � 300 V and 1 abV � 10�8V. 

1.2 Mathematics 

Mathematical symbolism is set out in Table 1.6. This sub-
section gives trigonometric and hyperbolic relations, series 
(including Fourier series for a number of common wave 
forms), binary enumeration and a list of common deriva-
tives and integrals. 

1018 exa E 
1015 peta P 
1012 tera T 

109 giga G 
106 mega M 
103 kilo k 

102 hecto h 
101 deca da 
10�1 deci d 

10�3 milli m 
10�6 micro �&
10�9 nano n 

10�12 pico p 
10�15 femto f 
10�18 atto a 

10�2 centi c 

Table 1.3 Auxiliary units 

Quantity Symbol SI Quantity Symbol SI 

Angle Mass 
degree (�) �/180 rad tonne t 1000 kg 
minute (0) Ð Ð 
second (0 0) Ð Ð Nucleonics, Radiation 

becquerel Bq 1.0 s �1 

Area gray Gy 1.0 J/kg 
are a 100 m 2 curie Ci 3.7 � 1010 Bq 
hectare ha 0.01 km2 rad rd 0.01 Gy 
barn barn 10�28 m 2 roentgen R 2.6 � 10�4 C/kg 

Energy Pressure 
erg erg 0.1 mJ bar b 100 kPa 
calorie cal 4.186 J torr Torr 133.3 Pa 
electron-volt eV 0.160 aJ Time 
gauss-oersted Ga Oe 7.96 mJ/m3 minute min 60 s 

Force hour h 3600 s 
dyne dyn 10 mN day d 86 400 s 

Length 
AÊ ngstrom AÊ 0.1 mm 

Volume 
litre 1 or L 1.0 dm3 
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Table 1.4 Conversion factors 

Length [m] Density [kg/m, kg/m3] 
1 mil 25.40 mm 1 lb/in 17.86 kg/m 
1 in 25.40 mm 1 lb/ft 1.488 kg/m 
1 ft 
1 yd 
1 fathom 
1 mile 

0.3048 m 
0.9144 m 
1.829 m 
1.6093 km 

1 lb/yd 
1 lb/in3 

1 lb/ft3 

1 ton/yd3 

0.496 kg/m 
27.68 Mg/m3 

16.02 kg/m3 

1329 kg/m3 

1 nautical mile 1.852 km 

Area [m2] 
1 circular mil 
1 in  2 

1 ft2 

1 yd2 

1 acre 
1 mile2 

Volume [m3] 
1 in  3 

1 ft3 

1 yd3 

1 UKgal 

506.7 mm 2 

645.2 mm 2 

0.0929 m 2 

0.8361 m 2 

4047 m 2 

2.590 km2 

16.39 cm 3 

0.0283 m 3 

0.7646 m 3 

4.546 dm3 

Flow rate [kg/s, m 3/s] 
1 lb/h 
1 ton/h 
1 lb/s 
1 ft3/h 
1 ft3/s 
1 gal/h 
1 gal/min 
1 gal/s 

Force [N], Pressure [Pa] 
1 dyn 
1 kgf 
1 ozf 

0.1260 g/s 
0.2822 kg/s 
0.4536 kg/s 
7.866 cm 3/s 
0.0283 m 3/s 
1.263 cm 3/s 
75.77 cm 3/s 
4.546 dm 3/s 

10.0 mN 
9.807 N 
0.278 N 

1 lbf 4.445 N 
Velocity [m/s, rad/s] 
Acceleration [m/s2, rad/s  2] 
1 ft/min 
1 in/s 
1 ft/s 
1 mile/h 
1 knot 
1 deg/s 

5.080 mm/s 
25.40 mm/s 
0.3048 m/s 
0.4470 m/s 
0.5144 m/s 
17.45 mrad/s 

1 tonf 
1 dyn/cm2 

1 lbf/ft2 

1 lbf/in2 

1 tonf/ft2 

1 tonf/in2 

1 kgf/m2 

1 kgf/cm2 

9.964 kN 
0.10 Pa 
47.88 Pa 
6.895 kPa 
107.2 kPa 
15.44 MPa 
9.807 Pa 
98.07 kPa 

1 rev/min 0.1047 rad/s 1 mmHg 133.3 Pa 
1 rev/s 
1 ft/s2 

1 mile/h per s 

6.283 rad/s 
0.3048 m/s2 

0.4470 m/s2 

1 inHg 
1 inH2O 
1 ftH2O 

3.386 kPa 
149.1 Pa 
2.989 kPa 

Mass [kg] Torque [N m] 
1 oz 28.35 g 1 ozf in 7.062 nN m 
1 lb 0.454 kg 1 lbf in 0.113 N m 
1 slug 14.59 kg 1 lbf ft 1.356 N m 
1 cwt 50.80 kg 1 tonf ft 3.307 kN m 
1 UKton 1016 kg 1 kgf m 9.806 N m 

Energy [J], Power [W] 
1 ft lbf 
1 m kgf 
1 Btu 
1 therm 
1 hp h 
1 kW h 

1.356 J 
9.807 J 
1055 J 
105.5 kJ 
2.685 MJ 
3.60 MJ 

Inertia [kg m 2] 
Momentum [kg m/s, kg m 2/s] 
1 oz in2 

1 lb in2 

1 lb ft2 

1 slug ft2 

1 ton ft2 

0.018 g m 2 

0.293 g m 2 

0.0421 kg m 2 

1.355 kg m 2 

94.30 kg m 2 

1 Btu/h 
1 ft lbf/s 

0.293 W 
1.356 W 

1 lb ft/s 
1 lb ft2/s 

0.138 kg m/s 
0.042 kg m 2/s 

1 m kgf/s 9.807 W 
1 hp 745.9 W Viscosity [Pa s, m 2/s] 

Thermal quantities [W, J, kg, K] 
1 W/in2 

1 Btu/(ft2 h) 
1 Btu/(ft3 h) 
1 Btu/(ft h �F) 
1 ft lbf/lb 

1.550 kW/m2 

3.155 W/m2 

10.35 W/m3 

1.731 W/(m K) 
2.989 J/kg 

1 poise 
1 kgf s/m2 

1 lbf s/ft2 

1 lbf h/ft2 

1 stokes 
1 in 2/s 
1 ft2/s 

9.807 Pa s 
9.807 Pa s 
47.88 Pa s 
172.4 kPa s 
1.0 cm 2/s 
6.452 cm 2/s 
929.0 cm 2/s 

1 Btu/lb 
1 Btu/ft3 

1 ft lbf/(lb �F) 
1 Btu/(lb �F) 
1 Btu/(ft3 �F) 

2326 J/kg 
37.26 KJ/m3 

5.380 J/(kg K) 
4.187 kJ/(kg K) 
67.07 kJ/m 3 K 

Illumination [cd, lm] 
1 lm/ft2 

1 cd/ft2 

1 cd/in2 

10.76 lm/m2 

10.76 cd/m2 

1550 cd/m2 
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Table 1.5 Relation between SI, e.s. and e.m. units 

Quantity 

Length 
Mass 
Time 
Force 
Torque 
Energy 
Power 
Charge, electric flux 
density 

Potential, e.m.f. 
Electric field strength 
Current 
density 

Magnetic flux 
density 

Mag. fd. strength 
M.M.F. 
Resistivity 
Conductivity 
Permeability (abs) 
Permittivity (abs) 
Resistance 
Conductance 
Inductance 
Capacitance 
Reluctance 
Permeance 

SI unit 

m 
kg 
s 
N 
N m 
J 
W 
C 
C/m2 

V 
V/m 
A 
A/m2 

Wb 
T 
A/m 
A 

 m 
S/m 
H/m 
F/m 

 
S 
H 
F 
A/Wb 
Wb/A 

102 

103 

1 
105 

107 

107 

107 

3 � 109 

3 � 105 

10�2/3 
10�4/3 
3 � 109 

3 � 105 

10�2/3 
10�6/3 
12�� 107 

12�� 109 

10�9/9 
9 � 109 

10�13/36�&
36�� 109 

10�11/9 
9 � 1011 

10�12/9 
9 � 1011 

36�� 1011 

1011/36�&

e.s.u. 

Equivalent number n of 

e.m.u. 

cm 102 cm 
g  103 g 
s 1 s 
dyn 105 dyn 
dyn cm 107 dyn cm 
erg 107 erg 
erg/s 107 erg/s 
stC 10�1 abC 
stC/cm2 10�5 abC/cm2 

stV 108 abV 
stV/cm 106 abV/cm 
stA 10�1 abA 
stA/cm2 10�5 abA/cm2 

stWb 108 Mx 
stWb/cm2 104 Gs 
stA/cm 4�� 10�3 Oe 
stA 4�� 10�1 Gb 
st
 cm 1011 ab
 cm 
stS/cm 10�11 abS/cm 
Ð  107/4�& Ð 
Ð 4�� 10�11 Ð 
st
 109 ab
 
stS 10�9 abS 
stH 109 cm 
cm 9 � 1011 abF 
Ð 4�� 10�8 Gb/Mx 
Ð  109/4�& Mx/Gb 

Gb � gilbert; Gs � gauss; Mx �maxwell; Oe �oersted. 

1.2.1 Trigonometric relations 

The trigonometric functions (sine, cosine, tangent, cosecant, 
secant, cotangent) of an angle � are based on the circle, given 
by x 2 � y 2 � h2. Let two radii of the circle enclose an angle �&
and form the sector area Sc � (�h2)(�/2�) shown shaded in 
Figure 1.1 (left): then �& can be defined as 2Sc/h

2. The  right-
angled triangle with sides h (hypotenuse), a (adjacent side) and p 
(opposite side) give ratios defining the trigonometric functions 

sin � � p=h cosec � � 1= sin � � h=p 

cos � � a=h sec � � 1= cos � � h=a 

tan � � p=a cotan � � 1= tan � � a=p 

In any triangle (Figure 1.1, right) with angles, A, B and C at 
the corners opposite, respectively, to sides a, b and c, then 
A �B � C �� rad (180�) and the following relations hold: 

a � b cos C � c cos B 

b � c cos A � a cos C 

c � a cos B � b cos A 
a= sin A � b= sin B � c= sin C 

a � b2 � c 2 � 2bc cos A 

�a � b�=�a � b� � �sin A � sin B�=�sin A � sin B�(
Other useful relationships are: 

sin�x � y� � sin x � cos y � cos x � sin y


cos�x � y� � cos x � cos y � sin x � sin y


tan�x � y� � �tan x � tan y�=�1 � tan x � tan y�(
2sin2 x � 1 �1 � cos 2x� cos x � � 1 �1 � cos 2x�2 2


2
sin2 x � cos x � 1 sin3 x � � 1 �3 sin x � sin 3x�4

3
cos x � 1 �3 cos x � cos 3x�4 � �#

cos sin 
sin x � sin y � 2 1 �x � y� � ( 1 �x � y�2sin 2 cos � �#

cos sin 
cos x � cos y � �2 1 �x � y� � ( 1 �x � y�2sin 2 cos 

tan x � tan y � sin�x � y�= cos x � cos y 

sin2 x � sin2 y � sin�x � y� � sin�x � y�(
2 cos x � cos2 y � � sin�x � y� � sin�x � y�(
2 cos x � sin2 y � cos�x � y� � cos�x � y�(

�#
d�sin x�=dx � cos x sin x � dx � � cos x � k 

�#
d�cos x�=dx � � sin x cos x � dx � sin x � k 

d�tan x�=dx � sec2 x 
�#
tan x � dx � � ln j cos xj � k 

Values of sin �, cos � and tan � for 0�( < � < 90�( (or 0 < � &
< 1.571 rad) are given in Table 1.7 as a check list, as they 
can generally be obtained directly from calculators. 

2 
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Table 1.6 Mathematical symbolism Table 1.7 Trigonometric functions of �&

Term Symbol �& sin �& cos �& tan �&

Base of natural logarithms e ( � 2.718 28 . . . ) deg rad 
Complex number C �A � jB �C exp(j�) 

�C � �& 0 0.0 0.0 1.0 0.0 
argument; modulus arg C � �; mod C �C 5 0.087 0.087 0.996 0.087 
conjugate C* �A�jB �C exp(�j�) 10 0.175 0.174 0.985 0.176 

�C ���& 15 0.262 0.259 0.966 0.268 
real part; imaginary part Re C �A; Im  C �B 20 0.349 0.342 0.940 0.364 

Co-ordinates 25 0.436 0.423 0.906 0.466 
cartesian x, y, z 30 0.524 0.500 0.866 0.577 
cylindrical; spherical r, �, z; r, �, �& 35 0.611 0.574 0.819 0.700 

Function of x 40 0.698 0.643 0.766 0.839 
general f(x), g(x), F(x) 45 0.766 0.707 0.707 1.0 
Bessel Jn(x) 50 0.873 0.766 0.643 1.192 
circular sin x, cos x, tan x . .  .  55 0.960 0.819 0.574 1.428 
inverse arcsin x, arccos x, 60 1.047 0.866 0.500 1.732 

arctan x . .  .  65 1.134 0.906 0.423 2.145 
differential dx 70 1.222 0.940 0.342 2.747 
partial @x 75 1.309 0.966 0.259 3.732 

exponential exp(x) 80 1.396 0.985 0.174 5.671 
hyperbolic sinh x, cosh x, tanh x . .  .  85 1.484 0.996 0.097 11.43 
inverse arsinh x, arcosh x, 90 1.571 1.0 0.0 1(

artanh x . .  . 

increment �x, �x

limit lim x

logarithm

base b logb x

common; natural lg x; ln  x (or log x; loge x)


Matrix A, B 
complex conjugate A*, B* 
product AB 
square, determinant det A 
inverse A�1


transpose At


unit I

Operator 
Heaviside p (�( d/dt) 
impulse function �(t) 
Laplace L[f(t)] �F(s) s ( ��&� j!) 
nabla, del r(
rotation �/2 rad; j 
2�/3 rad h


step function H(t), u(t)

Vector A, a, B, b 
curl of A curl A, r�A 
divergence of A div A, r � (A 
gradient of �& grad �, r( �&
product: scalar; vector A �B; A �B 
units in cartesian axes i, j, k 

1.2.2 Exponential and hyperbolic relations 

Exponential functions For a positive datum (`real') 
number u, the exponential functions exp(u) and exp(�u) 
are given by the summation to infinity of the series 

3 4 exp��u� � (1 � u � u 2 =2! � u =3! � u =4! � � � � (
with exp(� u) increasing and exp(�u) decreasing at a rate 
proportional to u. 
If u � 1, then 

exp��1� � 1 � 1 � 1=2 � 1=6 � 1=24 � � � � � e � 2:718 � � � (
exp��1� � 1 � 1 � 1=2 � 1=6 � 1=24 � � � � � 1=e � 0:368 � � � (
In the electrical technology of transients, u is most com-

monly a negative function of time t given by u ��(t/T ). 
It then has the graphical form shown in Figure 1.2 (left) 
as a time dependent variable. With an initial value k, i.e. 
y � k exp(�t/T ), the rate of reduction with time is dy/dt �(
�(k/T)exp(�t/T ). The initial rate at t � 0 is  �k/T. If this 
rate were maintained, y would reach zero at t �T, defining 
the time constant T. Actually, after time T the value of y is k 
exp(� t/T ) � k exp(�1) � 0.368k. Each successive interval T 
decreases y by the factor 0.368. At a time t � 4.6T the value 
of y is 0.01k, and at t � 6.9T it is 0.001k. 

Figure 1.1 Trigonometric relations 
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Figure 1.3 Hyperbolic relations 

If u is a quadrature (`imaginary') number �jv, then 

3 4 exp��jv� � 1 � jv � v 2 =2!� jv =3!� v =4!� . . .  

because j2 ��1, j3 ��j1, j4 �� 1, etc. Figure 1.2 (right) 
shows the summation of the first five terms for exp(j1), i.e. 

exp�j1� � 1 � j1 � 1=2 � j1=6 � 1=24 

a complex or expression converging to a point P. The length 
OP is unity and the angle of OP to the datum axis is, in fact, 
1 rad. In general, exp(jv) is equivalent to a shift by �v rad. 
It follows that exp(�jv) � cos v � j sin v, and that 

exp�jv� � exp��jv� � 2 cos v exp�jv� � exp��jv� � j2 sin v 

For a complex number (u � jv), then 

exp�u � jv� � exp�u� � exp�jv� � exp�u� � �v 
Hyperbolic functions A point P on a rectangular hyper-

bola (x/a)2�( (y/a)2 � 1 defines the hyperbolic `sector' area 
2Sh � 1a ln[(x/a � (y/a)] shown shaded in Figure 1.3 (left). By 2

analogy with �&� 2Sc/h2 for the trigonometrical angle �, the  
hyperbolic entity (not an angle in the ordinary sense) is 
u � 2Sh/a 2, where  a is the major semi-axis. Then the hyperbolic 
functions of u for point P are: 

sinh u � y=a cosech u � a=y 

cosh u � x=a sech u � a=x 

tanh u � y=x coth u � x=y 

Figure 1.2 Exponential relations 

The principal relations yield the curves shown in the 
diagram (right) for values of u between 0 and 3. For higher 
values sinh u approaches �cosh u, and tanh u becomes 
asymptotic to �1. Inspection shows that cosh(�u) � cosh u, 
sinh(�u) ��sinh u and cosh2 u� sinh2 u � 1. 
The hyperbolic functions can also be expressed in the 

exponential form through the series 

4 6cosh u � 1 � u 2 =2!� u =4!� u =6!� � � � (
5 7sinh u � u � u 3 =3!� u =5!� u =7!� � � � (

so that 

cosh u � 1 �exp�u� � exp��u��( sinh u � 1 �exp�u� � exp��u��2 2 

cosh u � sinh u � exp�u�( cosh u � sinh u � exp��u�(

Other relations are: 

sinh u � sinh v � 2 sinh 1 �u � v� � cosh 1 �u � v�2 2 

cosh u � cosh v � 2 cosh 1 �u � v� � cosh 1 �u � v�2 2 

cosh u � cosh v � 2 sinh 1 �u � v� � sinh 1 �u � v�2 2 

sinh�u � v� � sinh u � cosh v � cosh u � sinh v 

cosh�u � v� � cosh u � cosh v � sinh u � sinh v 

tanh�u � v� � �tanh u � tanh v�=�1 � tanh u � tanh v�(
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Table 1.8 Exponential and hyperbolic functions 

u exp(u) exp(�u) sinh u cosh u tanh u 

0.0 1.0 1.0 0.0 1.0 0.0 
0.1 1.1052 0.9048 0.1092 1.0050 0.0997 
0.2 1.2214 0.8187 0.2013 1.0201 0.1974 
0.3 1.3499 0.7408 0.3045 1.0453 0.2913 
0.4 1.4918 0.6703 0.4108 1.0811 0.3799 
0.5 1.6487 0.6065 0.5211 1.1276 0.4621 
0.6 1.8221 0.5488 0.6367 1.1855 0.5370 
0.7 2.0138 0.4966 0.7586 1.2552 0.6044 
0.8 2.2255 0.4493 0.8881 1.3374 0.6640 
0.9 2.4596 0.4066 1.0265 1.4331 0.7163 
1.0 2.7183 0.3679 1.1752 1.5431 0.7616 
1.2 3.320 0.3012 1.5095 1.8107 0.8337 
1.4 4.055 0.2466 1.9043 2.1509 0.8854 
1.6 4.953 0.2019 2.376 2.577 0.9217 
1.8 6.050 0.1653 2.942 3.107 0.9468 
2.0 7.389 0.1353 3.627 3.762 0.9640 
2.303 10.00 0.100 4.950 5.049 0.9802 
2.5 12.18 0.0821 6.050 6.132 0.9866 
2.75 15.64 0.0639 7.789 7.853 0.9919 
3.0 20.09 0.0498 10.02 10.07 0.9951 
3.5 33.12 0.0302 16.54 16.57 0.9982 
4.0 54.60 0.0183 27.29 27.31 0.9993 
4.5 90.02 0.0111 45.00 45.01 0.9998 
4.605 100.0 0.0100 49.77 49.80 0.9999 
5.0 148.4 0.0067 74.20 74.21 0.9999 
5.5 244.7 0.0041 122.3 cosh u 

�#
tanh u 
�#

6.0 403.4 0.0025 201.7 � sinh u � 1.0 
6.908 1000 0.0010 500 � 1 

2 exp(u) 

sinh�u � jv� � �sinh u � cos v� � j�cosh u � sin v�(
cosh�u � jv� � �cosh u � cos v� � j�sinh u � sin v�(�
d�sinh u�=du �( cosh u sinh u � du �( cosh u �
d�cosh u�=du �( sinh u cosh u � du �( sinh u 

Exponential and hyperbolic functions of u between zero 
and 6.908 are listed in Table 1.8. Many calculators can give 
such values directly. 

1.2.3 Bessel functions 

Problems in a wide range of technology (e.g. in eddy 
currents, frequency modulation, etc.) can be set in the form 
of the Bessel equation 

� �
2d2 y 1 dy n� � �( 1 �( y �( 0
2dx2 x dx x

and its solutions are called Bessel functions of order n. For 
n � 0 the solution is 

4 =22 6 =22 � 42J0�x� � (1 � �x 2 =22� � �x � 42� � �x � 62� � � � � (
and for n � 1, 2, 3 . . . 

� �#
n 2 4x x x

Jn�x� � ( 1 �( �( � � � � (
2nn! 2�2n � 2�( 2 � 4�2n � 2��2n � 4�(

Table 1.9 gives values of  Jn(x) for various values of n and x. 

1.2.4 Series 

Factorials In several of the following the factorial (n!) of 
integral numbers appears. For n between 2 and 10 these are 

2! �( 2 1/2! � 0.5 
3! �( 6 1/3! � 0.1667 
4! �( 24 1/4! � 0.417 � 10�1 

5! �( 120 1/5! � 0.833 � 10�2 

6! �( 720 1/6! � 0.139 � 10�2 

7! �( 5 040 1/7! � 0.198 � 10�3 

8! �( 40 320 1/8! � 0.248 � 10�4 

9! �( 362 880 1/9! � 0.276 � 10�5 

10! � 3 628 800 1/10! � 0.276 � 10�6 

Progression 
Arithmetic a � (a � d) � (a � 2d) � � � � � [a � (n � 1)d] 

� 1 n (sum of 1st and nth terms) 2 

nGeometric a � ar � ar 2 � � � � � arn�1 � a(1�r )/(1�r) 
Trigonometric See Section 1.2.1. 
Exponential and hyperbolic See Section 1.2.2. 
Binomial 

n�n � 1��n � 2�(�1 � x�n �( 1 � nx �( n�n � 1�(
x 2 �( x 3 � � � � (

2! 3! 
n! � ��1�r xr � � � � (

r!�n � r�! 
n �a � x�n �( an�1 � �x=a��
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Binomial coefficients n!/[r! (n�r)!] are tabulated: 

Term r �( 0  1  2  3  4  5  6  7  8  9  10  

n � 1 1 1 
2  1  2  1  
3  1  3  3  1  
4  1  4  6  4  1  
5  1  5  10  10  5  1  
6  1  6  15  20  15  6  1  
7  1  7  21  35  35  21  7  1  
8  1  8  28  56  70  56  28  8  1  
9 1 9 36 84 126 126 84 36 9 1 
10 1 10 45 120 210 252 210 120 45 10 1 

Power If there is a power series for a function f(h), it is 
given by 

ii�( iii�f �h� � f �0� � hf �i��0� � �h2 =2!�f � �0� � �h3 =3!�f � �0� � � � � (

� �hr =r!�f �r��0� � � � � ( �Maclaurin�(
�ii�f �x � h� � f �x� � hf �i��x� � �h2 =2!�f �x� � � � � (

� �hr =r!�f �r��x� � � � � ( �Taylor�(

Permutation, combination 

nPr � n�n � 1��n � 2��n � 3� . . . �n � r � 1� � n!=�n � r�! 
nCr � �1=r!��n�n�1��n�2��n�3� . . . �n�r � 1�� � n!=r!�n�r�! 
Bessel See Section 1.2.3.

Fourier See Section 1.2.5.


1.2.5 Fourier series 

A univalued periodic wave form f(�) of period 2�& is repre-
sented by a summation in general of sine and cosine waves 
of fundamental period 2�& and of integral harmonic orders n 
(� 2, 3, 4, . . .) as  

f ��� � c0 � a1 cos �&� a2 cos 2�&� � � � � an cos n�&� � � � (
� b1 sin �&� b2 sin 2�&� � � � � bn sin n�&� � � � (

The mean value of f(�) over a full period 2�& is 

1 
�#2�&

c0 �( f ��� � d�&
2�& 0 

and the harmonic-component amplitudes a and b are 

1 
�#2�& 1 

�#2�&
an �( f ��� � cos n�& � d�;& bn �( f ��� � sin n�& � d�&

�& 0 �& 0 

Table 1.10 gives for a number of typical wave forms the 
harmonic series in square brackets, preceded by the mean 
value c0 where it is not zero. 

1.2.6 Derivatives and integrals 

Some basic forms are listed in Table 1.11. Entries in a given 
column are the integrals of those in the column to its 
left and the derivatives of those to its right. Constants of 
integration are omitted. 

1.2.7 Laplace transforms 

Laplace transformation is a method of deriving the 
response of a system to any stimulus. The system has a 
basic equation of behaviour, and the stimulus is a pulse, 
step, sine wave or other variable with time. Such a response 
involves integration: the Laplace transform method 
removes integration difficulties, as tables are available for 
the direct solution of a great variety of problems. The pro-
cess is analogous to evaluation (for example) of y � 2.13.6 

by transformation into a logarithmic form log 
y � 3.6 � log(2.1), and a subsequent inverse transformation 
back into arithmetic by use of a table of antilogarithms. 
The Laplace transform (L.t.) of a time-varying function 

f(t) is  �#1(
L� f �t�� � F�s� � ( exp��st� � f �t� � dt 

0 

and the inverse transformation of F(s) to give f(t) is  

L�1�F�s�� � f �t� � lim 
1 
�#��j!&

exp�st� � F�s� � ds 
2� ��j!&

The process, illustrated by the response of a current i(t) in  
an electrical network of impedance z to a voltage v(t) 
applied at t � 0, is to write down the transform equation 

I�s� � V�s�=Z�s�(
where I(s) is the L.t. of the current i(t), V(s) is the L.t. of the 
voltage v(t), and Z(s) is the operational impedance. Z(s) is 
obtained from the network resistance R, inductance L and 
capacitance C by leaving R unchanged but replacing L by 
Ls and C by 1/Cs. The process is equivalent to writing the 
network impedance for a steady state frequency !& and then 
replacing j!& by s. V(s) and Z(s) are polynomials in s: the 
quotient V(s)/Z(s) is reduced algebraically to a form recog-
nisable in the transform table. The resulting current/time 
relation i(t) is read out: it contains the complete solution. 
However, if at t � 0 the network has initial energy (i.e. if 
currents flow in inductors or charges are stored in capa-
citors), the equation becomes 

I�s� � �V�s� �U�s��=Z�s�(
where U(s) contains such terms as LI0 and (1/s)V0 for the 
inductors or capacitors at t � 0. 
A number of useful transform pairs is listed in Table 1.12. 

1.2.8 Binary numeration 

A number N in decimal notation can be represented by an 
ordered set of binary digits an, an�2, . .  . ,  a2, a1, a0 such that 

N � 2nan � 2n�1 an�1 � � � � � 2a1 � a0 

Decimal 1 2 3 4 5 6 7 8 9 10 100 
Binary 1 10 11 100 101 110 111 1000 1001 1010 1100100 
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Table 1.9 Bessel functions Jn(x) 

n Jn(1) Jn(2) Jn(3) Jn(4) Jn(5) Jn(6) Jn(7) Jn(8) Jn(9) Jn(10) Jn(11) Jn(12) Jn(13) Jn(14) Jn(15) 

0 0.7652 0.2239 �0.2601 �0.3971 �0.1776 0.1506 0.3001 0.1717 �0.0903 �0.2459 �0.1712 0.0477 0.2069 0.1711 �0.0142 

1 0.4401 0.5767 0.3391 �0.0660 �0.3276 �0.2767 �0.0047 0.2346 0.2453 0.0435 �0.1768 �0.2234 �0.0703 0.1334 0.2051 

2 0.1149 0.3528 0.4861 0.3641 0.0466 �0.2429 �0.3014 �0.1130 0.1448 0.2546 0.1390 �0.0849 �0.2177 �0.1520 0.0416 

3 0.0196 0.1289 0.3091 0.4302 0.3648 0.1148 �0.1676 �0.2911 �0.1809 0.0584 0.2273 0.1951 0.0033 �0.1768 �0.1940 

4 Ð 0.0340 0.1320 0.2811 0.3912 0.3567 0.1578 �0.1054 �0.2655 �0.2196 �0.0150 0.1825 0.2193 0.0762 �0.1192 

5 Ð Ð 0.0430 0.1321 0.2611 0.3621 0.3479 0.1858 �0.0550 �0.2341 �0.2383 �0.0735 0.1316 0.2204 0.1305 

6 Ð Ð 0.0114 0.0491 0.1310 0.2458 0.3392 0.3376 0.2043 �0.0145 �0.2016 �0.2437 �0.1180 0.0812 0.2061 

7 Ð Ð Ð 0.0152 0.0534 0.1296 0.2336 0.3206 0.3275 0.2167 0.0184 �0.1703 �0.2406 �0.1508 0.0345 

8 Ð Ð Ð Ð 0.0184 0.0565 0.1280 0.2235 0.3051 0.3179 0.2250 0.0451 �0.1410 �0.2320 �0.1740 

9 Ð Ð Ð Ð Ð 0.0212 0.0589 0.1263 0.2149 0.2919 0.3089 0.2304 0.0670 �0.1143 �0.2200 

10 Ð Ð Ð Ð Ð Ð 0.0235 0.0608 0.1247 0.2075 0.2804 0.3005 0.2338 0.0850 �0.0901 

11 Ð Ð Ð Ð Ð Ð Ð 0.0256 0.0622 0.1231 0.2010 0.2704 0.2927 0.2357 0.0999 

12 Ð Ð Ð Ð Ð Ð Ð Ð 0.0274 0.0634 0.1216 0.1953 0.2615 0.2855 0.2367 

13 Ð Ð Ð Ð Ð Ð Ð Ð 0.0108 0.0290 0.0643 0.1201 0.1901 0.2536 0.2787 

14 Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.0119 0.0304 0.0650 0.1188 0.1855 0.2464 

15 Ð Ð Ð Ð Ð Ð Ð Ð Ð Ð 0.0130 0.0316 0.0656 0.1174 0.1813 

Values below 0.01 not tabulated. 
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Table 1.10 Fourier series 

Wave form Series 

Sine: a sin �& Cosine: a sin �&

� �#
4 sin �& sin 3�& sin 5�& sin 7�&

Square: a �( �( �( � � � � (
�& 1 3 5 7 

� �#
2
p
3 sin �& sin 5�& sin 7�& sin 11�& sin 13�& sin 17�&

Rectangular block: a � � � � �( � � � � (
�& 1 5 7 11 13 17 

�#
4 sin �& sin 3�& sin 5�& sin 7�& sin 9�& sin 11�&

Rectangular block: a � � � � �(
�& 2 � 1 3 2 � 5 2 � 7 9 2 � 11 �#

sin 13�& sin 15�& sin 17�&�( �( �( � � � � (
2 � 13 15 2 � 17 

� �#
3 sin �& sin 5�& sin 7�& sin 11�& sin 13�& sin 17�&

Stepped rectangle: a � � �( �( �( � � � � (
�& 1 5 7 11 13 17 

�#
3
p
3 sin �& sin 5�& sin 7�& sin 11�& sin 13�&

Asymmetric rectangle: a � � �( �( � � � � (
2�& 1 5 7 11 13 

cos 2�& cos 4�& cos 8�& cos 10�&� � � �( � � � �� (
2 4 8 10 

� �#
8 sin �& sin 3�& sin 5�& sin 7�& sin 9�& sin 11�&

Triangle: a � � � � �( � � � � (
�2 1 9 25 49 81 121 

� �#
3 sin �& sin 2�& sin 3�& sin 4�& sin 5�&

Sawtooth: a �( �( �( �( � � � � (
�& 1 2 3 4 5 

� �#
4 sin �& � sin �& sin 3�& � sin 3�& sin 5�& � sin 5�&

Trapeze: a �( �( � � � � (
��& 1 9 25 � �#
6
p
3 sin �& sin 5�& sin 7�& sin 11�&

a �( �( �( � � � � ( for �=�/3 
�2 1 25 49 121 

� �#
9 sin �& sin 5�& sin 7�& sin 11�& sin 13�&

Trapeze-triangle: a � � �( �( � � � � (
�2 1 25 49 121 169 

cont'd 
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Table 1.10 (continued ) 

Wave form Series 

� �#
1 2 �& sin �& cos 2�& cos 4�& cos 6�&

Rectified sine (half-wave): a � a �( �( �( � � � � (
� �& 4 1 � 3 3 � 5 5 � 7 

� �#
2 4 cos 2�& cos 4�& cos 6�& cos 8�&

Rectified sine (full-wave): a � a �( �( �( � � � � (
� �& 1 � 3 3 � 5 5 � 7 7 � 9 

� �#
m �& 2m �& cos m�& cos 2m�& cos 3m�&

Rectified sine (m-phase): a sin � a sin �( �( � � � � (
�& m �& m m2 � 1 4m2 � 1 9m2 � 1 

� �#
�& 2 sin �& � cos �& sin 2�& � cos 2�& sin 3�& � cos 3�&

Rectangular pulse train: a � a �( �( � � � � (
� �& 1 2 3 

� �#
�& 2�& cos �& cos 2�& cos 3�&

a � a �( �( � � � � ( for �& �( �&
� �& 1 2 3 

"#
1 1 1 �& 4 sin2 �2 ��( sin2 2�( ��( sin2 3�( ��2Triangular pulse train: a �a cos��( 2 cos2��( cos3������ (

2�& ��& 1 4 9 

� �&
a �a �cos��cos2��cos 3������ ( for �&��&
2� �&

where the as have the values either 1 or 0. Thus, if N � 19, 
19 � 16 � 2 � 1 � (24)1 � (23)0 � (22)0 � (21)1 � (20)1 � 10011 

in binary notation. The rules of addition and multiplication 
are 

0 � 0 � 0, 0 � 1 � 1, 1 � 1 � 10; 0�0 � 0, 0�1 � 0, 1�1 � 1 

1.2.9 Power ratio 

In communication networks the powers P1 and P2 at 
two specified points may differ widely as the result of ampli-
fication or attenuation. The power ratio P1/P2 is more 
convenient in logarithmic terms. 
Neper [Np] This is the natural logarithm of a voltage or 

current ratio, given by 

a �( ln�V1=V2 �( or a �( ln�I1=I2� Np 

If the voltages are applied to, or the currents flow in, 
identical impedances, then the power ratio is 

a �( ln�V1=V2 �2 �( 2 ln�V1=V2�(

and similarly for current. 
Decibel [dB] The power gain is given by the common 

logarithm lg(P1/P2) in bel [B], or most commonly by 
A � 10 log(P1/P2) decibel [dB]. With again the proviso 

that the powers are developed in identical impedances, the 
power gain is 

A �( 10 log�P1 =P2� � (10 log�V1 =V2�2 �( 20 log�V1 =V2� dB 

Table 1.13 gives the power ratio corresponding to a gain 
A (in dB) and the related identical-impedance voltage (or 
current) ratios. Approximately, 3 dB corresponds to a 
power ratio of 2, and 6 dB to a power ratio of 4. The decibel 
equivalent of 1 Np is 8.69 dB. 

1.2.10 Matrices and vectors 

1.2.10.1 Definitions 

If a11, a12, a13, a14 . . . is a set of elements, then the rectangu-
lar array 2 3#

a14 . . . a1na11 a12 a13 7a24 . . . a2n 6# a21 a22 a23 6 7A �( 4 5#
am1 am2 am3 am4 . . . amn 

arranged in m rows and n columns is called an (m � n) 
matrix. If  m � n then A is n-square. 
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Table 1.11 Derivatives and integrals  �
d[ f(x)]/dx f(x)	 f(x) �( dx 

1	 x 
n�1	 n nx x (n =�1) 

�1/x 2 1/x 
1/x ln x 
exp x exp x 
cos x sin x 
�sin x cos x 

2 sec x tan x 
�cosec x �( cot x cosec x 
sec x �( tan x sec x 
�cosec2 x cot x 

21/ H(a 2�x )	 arcsin(x/a) 
2�1/H(a 2�x )	 arccos(x/a) 

2a/(a 2 �( x )	 arctan(x/a) 
2�a/x H(x 2�a )	 arccosec(x/a) 

2a/x H(x �a 2)	 arcsec(x/a) 
2�a/(a 2 �( x ) arccot(x/a) 

cosh x sinh x 
sinh x cosh x 
sech2 x tanh x 
�cosech x �( coth x cosech x 
�sech x �( tanh x sech x 
�cosech2 x coth x 
1/H(x 2 � 1) arsinh x 
1/H(x 2�1) arcosh x 
1/(1�x 2) artanh x 
�1/x H(x 2 �( 1) arcosech x 
�1/x H(1�x 2) arsech x 
1/(1�x 2) arcoth x 

dv du	 u(x) �( v(x)u	 �( v 
dx dx 

1 du u dv u�x�

v dx 
�(
v2 dx v�x�


r exp(xa) �( sin(!x ��&�( �) exp(ax) �( sin(!x �( �)


1 2 x2
n � 1x /(n � 1) 

ln x 
x ln x�x 
exp x 
�cos x 
sin x 
ln(sec x) 
ln ( tan 1 x)2 
ln(sec x � tan x) 
ln(sin x) 

2x arcsin(x/a) �H(a 2�x ) 
2x arccos(x/a)�H(a 2�x ) 

1x arctan(x=a) �( 2 a ln (a2+x2) 
2x arccosec(x/a) � a ln | x �( H(x 2�a ) |  

2x arcsec(x/a)�a ln | x �H(x 2�a ) |  
2x arccot(x/a) � 1 a ln (a +x2)2 

cosh x 
sinh x 
ln(cosh x) 
�ln(tanh 1 x�2 
2 arctan (exp x)

ln(sinh x)

x arsinh x�H(1 �( x 2)

x arcosh x�H(x 2�1)

x artanh x � 1


2 ln (1 �( x2) 
x arcosech x � arsinh x 
x arsech x � arcsin x 
x arcoth x � 1 

2 ln (x2 �( 1) �#
du 

uv �( v dv 
dv 

Ð 

(1/r)exp(ax)sin(!x ����) 
2r �(H(!2 �( a ) �&�( arctan (!/a) 

An ordered set of elements x �( [x1, x2, x3 . .  .  xn] is called 1.2.10.3 Rules of operation 
an n-vector. 

(i)	 Associativity A �( (B �( C) �( (A �( B) �( C,
An (n �( 1) matrix is called a column vector and a (1 �( n) 

A(BC) �( (AB)C �(ABC.
matrix a row vector. 

(ii)	 Distributivity A(B �C) �(AB �AC, 
(B �C)A �(BA �CA. 

1.2.10.2 Basic operations (iii) Identity If U is the (n �( n) matrix (�ij), i, j �( 1 . . .  n, 
If A �( (ars), B �( (brs), where �ij �( 1 if  i �( j and 0 otherwise, then U is the 

(i)	 Sum C �(A �B is defined by crs �( ars � brs, for diagonal unit matrix and A U  �(A. 
(iv)	 Inverse If the product U �(AB exists, then B �(A�1,r �( 1 . . .  m; s �( 1 .  . .  n. 

the inverse matrix of A. If both inverses A�1 and B�1 
(ii)	 Product If A is an (m �( q) matrix and  B is a (q �( n) 

A�1exist, then (A B)�1 �(B�1 .matrix, then the product C �(AB is an (m �( n) matrix  
defined by (crs) �(�p arp bps, p �( 1 . . .  q; r �( 1 . . .  m; (v) Transposition The transpose of A is written as 

AT 
s �( 1 . . .  n. If  AB �(BA then A and B are said to commute. and is the matrix whose rows are the columns 

(iii)	 Matrix-vector product If x �( [x1 . . .  xn], then b �(Ax is of A. If the product C �(AB exists then 

defined by (br) �(�p arp xp, p �( 1 .  . .  n; r �( 1 . . .  m. CT �( (AB)T �( BTAT . 

(iv)	 Multiplication of  a  matrix  by a (scalar) element  If k is (vi) Conjugate For A �( (ars), the congugate of A is 

an element then C �( kA �(Ak is defined by (crs) �( k(ars). denoted by A* �( (ars*). 
(v)	 Equality If A �(B, then (aij) �( (bij), for i �( 1 . . .  n; (vii) Orthogonality Matrix A is orthogonal if 

AAT �( U.j �( 1 . . .  m. 
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Table 1.12 Laplace transforms 

Definition f( t ) from t �( 0+ F(s) �( L� f (t)� � (
�1(
0�( f (t) �( exp (�st) �( dt 

Sum 

First derivative 

nth derivative 

Definite integral 

Shift by T 

Periodic function (period T ) 

Initial value 

Final value 

af1(t)+bf2(t) 

(d/dt) f (t) 
n(dn/dt ) f (t) � T 

f (t) �( dt
0�

f(t�T ) 

f(t) 

f(t), t!0+ 

f(t), t!1(

aF1(s)+bF2(s) 

sF(s)�f(0�) 
n n�2s F(s)�s n�1f(0�)� s f (1)(0�)��( �( ��f (n�1)(0�) 
1 
F(s) 

s 

exp(�sT ) �(F(s) 

1 
�#T 

exp (�sT) �( f (t) �( dt 
1 �( exp ( �( sT ) 0�(

sF(s), s!1(
sF(s), s!0 

Description f(t) F(s) f(t) to base t 

1. Unit impulse �(t) 

2. Unit step H(t) 

3. Delayed step H(t�T ) 

4. Rectangular pulse (duration T )  H(t)�H(t�T ) 

5. Unit ramp t 

6. Delayed ramp (t�T )H(t�T ) 

7. nth-order ramp tn 

8. Exponential decay exp(��t) 

9. Exponential rise 1�exp(��t) 

10. Exponential �( t t exp(��t) 

11. Exponential �( tn tn exp(��t) 

12. Difference of exponentials exp(��t)�exp(��t) 

1 

1 
s 

exp (�st) 
s 

1 �( exp (�sT ) 
s 

1 
s2 

exp (�sT) 
2s

n! 
sn�1 

1 
s �( �&

�&

s(s �( �) 

1 

(s �( �)2 

n! 

(s �( �)n�1 

(s �( �)(s �( �) 
cont'd 
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Table 1.12 (continued) 

Definition f( t ) from t � 0+ F(s) � L� f (t)� �
�1(
0� f (t) � exp (�st) � dt 

!&

13. Sinusoidal sin !t s2 � !2 

14. Phase-advanced sine sin(!t+�) 
! cos �&� s sin �&

s2 � !2 

2! s 
15. Sine � t t sin !t 

(s2 � !2)2 

!&
16. Exponentially decaying sine exp(��t)sin !t 

(s � �)2 � !2 

s 
17. Cosinusoidal cos !t 

s2 � !2 

18. Phase-advanced cosine cos(!t+�) 
s cos �&� ! sin �&

s2 � !2 

19. Offset cosine 1�cos !t !2 

s(s2 � !2) 

s2 � !2 

20. Cosine � t t cos !t 
(s2 � !2)2 

21. Exponentially decaying cosine exp(��t)cos !t (s � �) 
(s � �)2 � !2 

2!3 

22. Trigonometrical function G(t) sin !t�!t cos !t 
(s2 � !2)2 

23. Exponentially decaying 
trigonometrical function exp(��t) �G(t) 2!3 

�(s � �)2 � !2�2 

!&
24. Hyperbolic sine sinh !t 

s2 � !2 

s 
25. Hyperbolic cosine cosh !t 

s2 � !2 

26. Rectangular wave (period T ) f(t) 
1 � tanh(sT =4) 

2s 

27. Half-wave rectified sine (T � 2�/!) f(t) 
! exp (sT=2)cosech(sT=2) 

2(s2 � !2 ) 

28. Full-wave rectified sine (T � 2�/!) f(t) 
! coth(sT =2) 

s2 � !2 
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Table 1.13 Decibel gain: power and voltage ratios 

A P1/P2 V1/V2 A P1/P2 V1/V2 

0 1.000 1.000 9 
0.1 1.023 1.012 10 
0.2 1.047 1.023 12 
0.3 1.072 1.032 14 
0.4 1.096 1.047 16 
0.6 1.148 1.072 18 
0.8 1.202 1.096 20 
1.0 1.259 1.122 25 
1.2 1.318 1.148 30 
1.5 1.413 1.189 35 
2.0 1.585 1.259 40 
2.5 1.778 1.333 45 
3.0 1.995 1.413 50 
3.5 2.239 1.496 55 
4.0 2.512 1.585 60 
4.5 2.818 1.679 65 
5.0 3.162 1.778 70 
6.0 3.981 1.995 80 
7.0 5.012 2.239 90 
8.0 6.310 2.512 100 

1.2.10.4 Determinant and trace 

(i)	 The determinant of a square matrix A denoted by 
|A|, also det(A), is defined by the recursive formula 
|A| � a11 M11 � a12 M12 � a13 M13 � � � � ((�1)na1n M1n 
where M11 is the determinant of the matrix with row 1 
and column 1 missing, M12 is the determinant of the 
matrix with row 1 and column 2 missing etc. 

(ii)	 The Trace of A is denoted by tr(A) ��i aii, i � 1,  2 . . .  n. 
(iii) Singularity The squarematrix  A is singular if det (A) � 0. 
(iv) The Characteristic Polynomial P(�) � det(A ��U). 

1.2.10.5 Eigensystems 

(i)	 Eigenvalues The eigenvalues of a matrix �(A) are the n 
complex roots �1(A), �2(A) . . .  �n(A) of the characteristic 
polynomial det(A ��U) � 0. Normally in most engin-
eering systems there are no equal roots so the eigenvalues 
are distinct. 

(ii)	 Eigenvectors For any distinct eigenvalue �i (A), there is 
an associated non-zero right eigenvector Xi satisfying the 
homogeneous equations (A ��iU) Xi � 0, i � 1, 2 . . . n. 
The matrix (A ��iU) is singular, however, because the 
det (A ��iU) � 0; hence Xi is not unique. In each set of 
equations (A ��iU) Xi � 0 one equation is redundant 
and only the relative values of the elements of Xi can 
be determined. Thus the eigenvectors can be scaled 
arbitrarily, one element being assigned a value and the 
other elements determined accordingly from the remain-
ing non-homogeneous equations. 
The equations can be written also as AXi ��iXi, 

or combining all eigenvalues and right eigenvectors, 
AX ��X, where � is a diagonal matrix of the eigen-
values and X is a square matrix containing all the right 
eigenvectors in corresponding order. 
Since the eigenvalues of A and AT are identical, for 

every eigenvalue �i associated with an eigenvector Xi of 
A there is also an eigenvector Pi of A

T such that 
ATPi ��iPi. Alternatively the eigenvector Pi can be con-
sidered to be the left eigenvector of A by transposing the 

Tequation to give Pi 
TA � �iPi , or combining into one 

matrix equation, PTA �PT �. 

7.943 
10.00 
15.85 
25.12 
39.81 
63.10 
100.0 
316.2 
1000 
3162 
1.0 � 104 

3.2 � 104 

1.0 � 105 

3.2 � 105 

1.0 � 106 

3.2 � 106 

1.0 � 107 

1.0 � 108 

1.0 � 109 

1.0 � 1010 

2.818 
3.162 
3.981 
5.012 
6.310 
7.943 
10.00 
17.78 
31.62 
56.23 
100.0 
177.8 
316.2 
562.3 

1 000 
1 778 
3 160 
10 000 
31 620 
100 000 

Reciprocal eigenvectors Post-multiplying this last 
equation by the right eigenvector matrix X gives 
PTAX  �PT �X, which summarises the n sets of equations 
Pi 

T	 T 

W

AXi �Pi 
T �i Xi ��iPi Xi � ki�i, where  ki is a scalar 

formed from the (1 �n) by (n � 1) vector product Pi 
T Xi. 

With both Pi and Xi being scaled arbitrarily, re-scaling the 
left eigenvectors such that Wi � (1/ki) Pi, gives  Wi 

T Xj �(
�ij � 1, if i � j, and  � 0 otherwise. In matrix form 

T X �U, the unit matrix. The re-scaled left eigenvectors 
Wi 

T are said to be the reciprocal eigenvectors correspond-
ing to the right eigenvectors Xi. 

�a

(iii) Eigenvalue sensitivity analysis The change in the 
numerical value of �i with a change in any matrix A 
element �ars is to a first approximation given by 
��i=(wr)i (xs)i �ars where (wr)i is the r-th element of the 
reciprocal eignvector Wi corresponding to �i and (xs)i is 
the s-th element of the associated right eigenvector Xi. 
In more compact form the sensitivity coefficients ��i/ 

rs or condition numbers of all n eigenvalues with 
respect to all elements of matrix A are expressible by 
the 1-term dyads Si �Wi Xi 

T , i � 1 .  . .  n. 2	 3#
��i =�a11 ��i =�a12 . . .  ��i =�a1n 6# ��i =�a21 7��i =�a22 . . .  ��i =�a2n 6	 7#6	 7Si �( . . .  . . .  . . .  . . .  6	 7#4# . . .  . . .  5#
��i =�an1 ��i =�an2 . . .  ��i =�ann 

The matrix Si is known as i-th eigenvalue sensitivity 
matrix. 

(iv)	 Matrix functions Transposed eigenvalue sensitivity 
matrices appear also in the dyadic expansion of a matrix 

T 

S

and in matrix functions, thus A ��i�iXi Wi 
T ��i�iSi , 

i 
T 2 Si 

Ti � 1 . . .  n. Likewise  [A]2> [�i�i ]2 ��i�i or 
p Si 

Tin general [A]p ��i�i ; thus, for example, [A]�1 �(
�i �i 

�1 Si 
T . 

1.2.10.6 Norms 

(i)	 Vector norms A scalar measure of the magnitude of a 
vector X with elements x1, x2 . . .  xn, is  provided  by a  norm, 
the general family of norms being defined by kXk� [�i 
|xi|

p]1/p. The usual norms are found from the values of p. 
If p � 1, kXk is the sum of the magnitudes of the elements, 
p � 2, kXk is Euclidean norm or square root of the sum of 
the squares of the magnitudes of the elements, 
p � infinity, kXk is the infinity norm or magnitude of the 
largest element. 

(ii)	 Matrix norms Several norms for matrices have also 
been defined, for matrix A two being the Euclidean norm, 

]1/2kAkE � [�r�s|ars|
2 , r � 1,  2 . . .  m; s � 1, 2 . . . n, and  the  

absolute norm, kAk�maxr,s | ars|. 

1.3 Physical quantities 

Engineering processes involve energy associated with phys-
ical materials to convert, transport or radiate energy. As 
energy has several natural forms, and as materials differ 
profoundly in their physical characteristics, separate tech-
nologies have been devised around specific processes; and 
materials may have to be considered macroscopically in 
bulk, or in microstructure (molecular, atomic and subatomic) 
in accordance with the applications or processes concerned. 

1.3.1 Energy 

Like `force' and `time', energy is a unifying concept invented 
to systematise physical phenomena. It almost defies precise 
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definition, but may be described, as an aid to an intuitive 
appreciation. 
Energy is the capacity for `action' or work. 
Work is the measure of the change in energy state. 
State is the measure of the energy condition of a system. 
System is the ordered arrangement of related physical 

entities or processes, represented by a model. 
Mode is a description or mathematical formulation of the 

system to determine its behaviour. 
Behaviour describes (verbally or mathematically) the 

energy processes involved in changes of state. Energy 
storage occurs if the work done on a system is recoverable 
in its original form. Energy conversion takes place when 
related changes of state concern energy in a different form, 
the process sometimes being reversible. Energy dissipation is 
an irreversible conversion into heat. Energy transmission 
and radiation are forms of energy transport in which there 
is a finite propagation time. 

W
In a physical system there is an identifiable energy input 
i and output Wo. The system itself may store energy Ws 

and dissipate energy W. The energy conservation principle 
states that 

Wi �Ws �W �Wo 

Comparable statements can be made for energy changes �w 
and for energy rates (i.e. powers), giving 

�wi � �ws ��w ��wo and pi � ps � p � po 

1.3.1.1 Analogues 

In some cases the mathematical formulation of a system 
model resembles that of a model in a completely different 
physical system: the two systems are then analogues. 
Consider linear and rotary displacements in a simple 
mechanical system with the conditions in an electric circuit, 
with the following nomenclature: 

A mechanical element (such as a spring) of compliance k 
(which describes the displacement per unit force and is the 
inverse of the stiffness) has a displacement l � kf when a 
force f is applied. At a final force f1 the potential energy 
stored is W=1 kf1

2. For the rotary case, �&� kM and2 
W =1 kM1

2. In the electric circuit with a pure capacitance 2 
C, to which a p.d. v is applied, the charge is q �Cv and the 

1electric energy stored at v1 is W=2 Cv
2 

f

1. 
Use is made of these correspondences in mechanical 

problems (e.g. of vibration) when the parameters can be con-
sidered to be `lumped'. An ideal transformer, in which the 
primary m.m.f. in ampere-turns i1N1 is equal to the second-
ary m.m.f. i2N2 has as analogue the simple lever, in which a 
force f1 at a point distant l1 from the fulcrum corresponds to 
2 at l2 such that f1l1 � f2l2. 
A simple series circuit is described by the equation 

v � L(di/dt) �Ri � q/C or, with i written as dq/dt, 

2v �L(d2 q/dt ) �R(dq/dt) � (1/C)q 

A corresponding mechanical system of mass, compliance 
and viscous friction (proportional to velocity) in which for 
a displacement l the inertial force is m(du/dt), the compli-
ance force is l/k and the friction force is ru, has a total force 

f � m�d2l=dt2� � r�dl=dt� � �1=k�l 
Thus the two systems are expressed in identical mathemat-
ical form. 

1.3.1.2 Fields 

Several physical problems are concerned with `fields' having 
stream-line properties. The eddyless flow of a liquid, the cur-
rent in a conducting medium, the flow of heat from a high- to 
a low-temperature region, are fields in which representative 
lines can be drawn to indicate at any point the direction of 

f 
m 

force [N] 
mass [kg] 

M 
J 

torque [N m] 
inertia [kg m 2] 

r friction [N s/m] r friction [N m s/rad] 
k compliance [m/N] k compliance [rad/N m] 
l displacement [m] �& displacement [rad] 
u velocity [m/s] !& angular velocity [rad/s] 

v voltage [V] 
L inductance [H] 
R resistance [
] 
C capacitance [F] 
q charge [C] 
i current [A] 

The force necessary to maintain a uniform linear velocity u 
against a viscous frictional resistance r is f � ur; the power is 
p � fu � u 2 r and the energy expended over a distance l is 
W � fut � u 2rt, since l � ut. These are, respectively, the ana-
logues of v � iR, p � vi � i2R and W � vit � i2Rt for the 
corresponding electrical system. For a constant angular 
velocity in a rotary mechanical system, M �!r, 
p �M!�!2 r and W �!2rt, since �&�!t. 
If a mass is given an acceleration du/dt, the force required 

is f �m(du/dt) and the stored kinetic energy at velocity u1 
2is W =1 mu1. For rotary acceleration, M � J(d!/dt) and 2 

W =1 J!2 
1. Analogously the application of a voltage v to a 2 

pure inductor L produces an increase of current at the rate 
di/dt such that v �L(di/dt) and the magnetic energy stored 

1at current i1 is W=2 Li
2. 

the flow there. Other lines, orthogonal to the flow lines, con-
nect points in the field having equal potential. Along these 
equipotential lines there is no tendency for flow to take place. 
Static electric fields between charged conductors (having 

equipotential surfaces) are of interest in problems of insula-
tion stressing. Magnetic fields, which in air-gaps may be 
assumed to cross between high-permeability ferromagnetic 
surfaces that are substantially equipotentials, may be 
studied in the course of investigations into flux distribution 
in machines. All the fields mentioned above satisfy 
Laplacian equations of the form 

�@2 V=@x 2� � �@2V=@y 2� � �@2V=@z 2� � 0 

The solution for a physical field of given geometry will 
apply to other Laplacian fields of similar geometry, e.g. 

System Potential Flux Medium 

current flow voltage V current I conductivity �&
heat flow temperature �& heat q thermal conductivity �&
electric field voltage V electric flux Q permittivity "&
magnetic field m.m.f. F magnetic flux �& permeability �&



//integras/b&h/eer/Final_06-09-02/eerc001

Physical quantities 1/19 

The ratio I/V for the first system would give the effective 
conductance G; correspondingly for the other systems, q/�&
gives the thermal conductance, Q/V gives the capacitance 
and �/F gives the permeance, so that if measurements are 
made in one system the results are applicable to all the others. 
It is usual to treat problems as two-dimensional where 

possible. Several field-mapping techniques have been devised, 
generally electrical because of the greater convenience and 
precision of electrical measurements. For two-dimensional 
problems, conductive methods include high-resistivity paper 
sheers, square-mesh `nets' of resistors and electrolytic tanks. 
The tank is especially adaptable to three-dimensional cases of 
axial symmetry. 
In the electrolytic tank a weak electrolyte, such as ordinary 

tap-water, provides the conducting medium. A scale model 
of the electrode system is set into the liquid. A low-voltage 
supply at some frequency between 50 Hz and 1 kHz is 
connected to the electrodes so that current flows through 
the electrolyte between them. A probe, adjustable in the 
horizontal plane and with its tip dipping vertically into the 
electrolyte, enables the potential field to be plotted. Electrode 
models are constructed from some suitable insulant (wood, 
paraffin wax, Bakelite, etc.), the electrode outlines being 
defined by a highly conductive material such as brass or 
copper. The metal is silver-plated to improve conductivity 
and reduce polarisation. Three-dimensional cases with axial 
symmetry are simulated by tilting the tank and using the 
surface of the electrolyte as a radial plane of the system. 
The conducting-sheet analogue substitutes a sheet of 

resistive material (usually `teledeltos' paper with silver-
painted electrodes) for the electrolyte. The method is not 
readily adaptable to three-dimensional plots, but is quick 
and inexpensive in time and material. 
The mesh or resistor-net analogue replaces a conductive 

continuum by a square mesh of equal resistors, the potential 
measurements being made at the nodes. Where the bound-
aries are simple, and where the `grain size' is sufficiently 
small, good results are obtained. As there are no polarisation 
troubles, direct voltage supply can be used. If the resistors are 
made adjustable, the net can be adapted to cases of inhomo-
geneity, as when plotting a magnetic field in which perme-
ability is dependent on flux density. Three-dimensional plots 
are made by arranging plane meshes in layers; the nodes are 
now the junctions of six instead of four resistors. 
A stretched elastic membrane, depressed or elevated in 

appropriate regions, will accommodate itself smoothly to the 
differences in level: the height of the membrane everywhere 
can be shown to be in conformity with a two-dimensional 
Laplace equation. Using a rubber sheet as a membrane, the 
path of electrons in an electric field between electrodes in a 
vacuum can be investigated by the analogous paths of rolling 
bearing-balls. Many other useful analogues have been devised, 
some for the rapid solution of mathematical processes. 
Recently considerable development has been made in 

point-by-point computer solutions for the more compli-
cated field patterns in three-dimensional space. 

1.3.2 Structure of matter 

Material substances, whether solid, liquid or gaseous, are 
conceived as composed of very large numbers of molecules. 
A molecule is the smallest portion of any substance which 
cannot be further subdivided without losing its characteristic 
material properties. In all states of matter molecules are in a 
state of rapid continuous motion. In a solid the molecules 
are relatively closely `packed' and the molecules, although 
rapidly moving, maintain a fixed mean position. Attractive 

forces between molecules account for the tendency of the 
solid to retain its shape. In a liquid the molecules are less 
closely packed and there is a weaker cohesion between them, 
so that they can wander about with some freedom within the 
liquid, which consequently takes up the shape of the vessel in 
which it is contained. The molecules in a gas are still more 
mobile, and are relatively far apart. The cohesive force is very 
small, and the gas is enabled freely to contract and expand. 
The usual effect of heat is to increase the intensity and speed 
of molecular activity so that `collisions' between molecules 
occur more often; the average spaces between the molecules 
increase, so that the substance attempts to expand, producing 
internal pressure if the expansion is resisted. 
Molecules are capable of further subdivision, but the 

resulting particles, called atoms, no longer have the same 
properties as the molecules from which they came. An atom 
is the smallest portion of matter than can enter into chemical 
combination or be chemically separated, but it cannot gener-
ally maintain a separate existence except in the few special 
cases where a single atom forms a molecule. A molecule 
may consist of one, two or more (sometimes many more) 
atoms of various kinds. A substance whose molecules are 
composed entirely of atoms of the same kind is called an 
element. Where atoms of two or more kinds are present, the 
molecule is that of a chemical compound. At present over 100 
elements are recognised (Table 1.14: the atomic mass number 
A is relative to 1/12 of the mass of an element of carbon-12). 
If the element symbols are arranged in a table in ascend-

ing order of atomic number, and in columns (`groups') and 
rows (`periods') with due regard to associated similarities, 
Table 1.15 is obtained. Metallic elements are found on the 
left, non-metals on the right. Some of the correspondences 
that emerge are: 

Group 1a: Alkali metals 
(Li 3, Na 11, K 19, Rb 37, Cs 55, Fr 87) 

2a: Alkaline earths 
(Be 4, Mg 12, Ca 20, Sr 38, Ba 56, Ra 88) 

1b: Copper group (Cu 29, Ag 47, Au 79) 
6b: Chromium group (Cr 24, Mo 42, W 74) 
7a: Halogens (F 9, Cl 17, Br 35, I 53, At 85) 
0: Rare gases 

(He 2, Ne 10, Ar 18, Kr 36, Xe 54, Rn 86) 
3a±6a: Semiconductors 

(B 5, Si 16, Ge 32, As 33, Sb 51, Te 52) 

In some cases a horizontal relation obtains as in the 
transition series (Sc 21 . . . Ni 28) and the heavy-atom rare 
earth and actinide series. The explanation lies in the struc-
ture of the atom. 

1.3.2.1 Atomic structure 

The original Bohr model of the hydrogen atom was a 
central nucleus containing almost the whole mass of the 
atom, and a single electron orbiting around it. Electrons, as 
small particles of negative electric charge, were discovered 
at the end of the nineteenth century, bringing to light the 
complex structure of atoms. The hydrogen nucleus is a 
proton, a mass having a charge equal to that of an electron, 
but positive. Extended to all elements, each has a nucleus 
comprising mass particles, some (protons) with a positive 
charge, others (neutrons) with no charge. The atomic mass 
number A is the total number of protons and neutrons in the 
nucleus; the atomic number Z is the number of positive 
charges, and the normal number of orbital electrons. The 
nuclear structure is not known, and the forces that bind 
the protons against their mutual attraction are conjectural. 
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The hydrogen atom (Figure 1.4) has one proton (Z �( 1) 
and one electron in an orbit formerly called the K shell. 
Helium (Z �( 2) has two protons, the two electrons occupy-
ing the K shell which, by the Pauli exclusion principle, can-
not have more than two. The next element in order is 
lithium (Z �( 3), the third electron in an outer L shell. With 
elements of increasing atomic number, the electrons are 
added to the L shell until it holds a maximum of 8, the 
surplus then occupying the M shell to a maximum of 18. 
The number of `valence' electrons (those in the outermost 
shell) determines the physical and chemical properties of the 
element. Those with completed outer shells are `stable'. 
Isotopes An element is often found to be a mixture of 

atoms with the same chemical property but different atomic 
masses: these are isotopes. The isotopes of an element must 
have the same number of electrons and protons, but differ 
in the number of neutrons, accounting for the non-integral 
average mass numbers. For example, neon comprises 90.4% 
of mass number 20, with 0.6% of 21 and 9.0% of mass 
number 22, giving a resultant mass number of 20.18. 
Energy states Atoms may be in various energy states. 

Thus, the filament of an incadescent lamp may emit light 
when excited by an electric current but not when the current 
is switched off. Heat energy is the kinetic energy of the 
atoms of a heated body. The more vigorous impact of 
atoms may not always shift the atom as a whole, but may 
shift an electron from one orbit to another of higher energy 
level within the atom. This position is not normally stable, 
and the electron gives up its momentarily acquired potential 
energy by falling back to its original level, releasing the 
energy as a light quantum or photon. 
Ionisation Among the electrons of an atom, those of the 

outermost shell are unique in that, on account of all the 
electron charges on the shells between them and the nucleus, 
they are the most loosely bound and most easily removable. 
In a variety of ways it is possible so to excite an atom that 
one of the outer electrons is torn away, leaving the atom 
ionised or converted for the time into an ion with an effect-
ive positive charge due to the unbalanced electrical state it 
has acquired. Ionisation may occur due to impact by other 
fast-moving particles, by irradiation with rays of suitable 
wavelength and by the application of intense electric fields. 

1.3.2.2 Wave mechanics 

The fundamental laws of optics can be explained without 
regard to the nature of light as an electromagnetic wave 
phenomenon, and photoelectricity emphasises its nature as 
a stream or ray of corpuscles. The phenomena of diffraction 
or interference can only be explained on the wave concept. 
Wave mechanics correlates the two apparently conflicting 
ideas into a wider concept of `waves of matter'. Electrons, 
atoms and even molecules participate in this duality, in that 
their effects appear sometimes as corpuscular, sometimes as 
of a wave nature. Streams of electrons behave in a corpus-
cular fashion in photoemission, but in certain circumstances 
show the diffraction effects familiar in wave action. 
Considerations of particle mechanics led de Broglie to 
write several theoretic papers (1922±1926) on the parallel-
ism between the dynamics of a particle and geometrical 
optics, and suggested that it was necessary to admit that 
classical dynamics could not interpret phenomena involving 
energy quanta. Wave mechanics was established by 
SchroÈ dinger in 1926 on de Broglie's conceptions. 
When electrons interact with matter, they exhibit wave 

properties: in the free state they act like particles. Light has 
a similar duality, as already noted. The hypothesis of de 
Broglie is that a particle of mass m and velocity u has wave 

Table 1.14 Elements (Z, atomic number; A, atomic mass; 
KLMNOPQ, electron shells) 

Z Name and symbol A Shells 

K L 
1 Hydrogen H 1.008 1 Ð 
2 Helium He 4.002 2 Ð 
3 Lithium Li 6.94 2 1 
4 Beryllium Be 9.02 2 2 
5 Boron B 10.82 2 3 
6 Carbon C 12 2 4 
7 Nitrogen N 14.01 2 5 
8 Oxygen O 16.00 2 6 
9 Fluorine F 19.00 2 7 
10 Neon Ne 20.18 2 8 

KL M N 
11 Sodium Na 22.99 10 1 Ð 
12 Magnesium Mg 24.32 10 2 Ð 
13 Aluminium Al 26.97 10 3 Ð 
14 Silicon Si 28.06 10 4 Ð 
15 Phosphorus P 31.02 10 5 Ð 
16 Sulphur S 32.06 10 6 Ð 
17 Chlorine Cl 35.46 10 7 Ð 
18 Argon Ar 39.94 10 8 Ð 
19 Potassium K 39.09 10 8 1 
20 Calcium Ca 40.08 10 8 2 
21 Scandium Sc 45.10 10 9 2 
22 Titanium Ti 47.90 10 10 2 
23 Vanadium V 0.95 10 11 2 
24 Chromium Cr 52.01 10 13 1 
25 Manganese Mn 54.93 10 13 2 
26 Iron Fe 55.84 10 14 2 
27 Cobalt Co 58.94 10 15 2 
28 Nickel Ni 58.69 10 16 2 
29 Copper Cu 63.57 10 18 1 
30 Zinc Zn 65.38 10 18 2 
31 Gallium Ga 69.72 10 18 3 
32 Germanium Ge 72.60 10 18 4 
33 Arsenic As 74.91 10 18 5 
34 Selenium Se 78.96 10 18 6 
35 Bromine Br 79.91 10 18 7 
36 Krypton Kr 83.70 10 18 8 

KLM N O 
37 Rubidium Rb 85.44 28 8 1 
38 Strontium Sr 87.63 28 8 2 
39 Yttrium Y 88.92 28 9 2 
40 Zirconium Zr 91.22 28 10 2 
41 Niobium Nb 92.91 28 12 1 
42 Molybdenum Mo 96.0 28 13 1 
43 Technetium Tc 99.0 28 14 1 
44 Ruthenium Ru 101.7 28 15 1 
45 Rhodium Rh 102.9 28 16 1 
46 Palladium Pd 106.7 28 18 Ð 
47 Silver Ag 107.9 28 18 1 
48 Cadmium Cd 112.4 28 18 2 
49 Indium In 114.8 28 18 3 
50 Tin Sn 118.7 28 18 4 
51 Antimony Sb 121.8 28 18 5 
52 Tellurium Te 127.6 28 18 6 
53 Iodine I 126.9 28 18 7 
54 Xenon Xe 131.3 28 18 8 

KLM N O P 
55 Caesium Cs 132.9 28 18 8 1 
56 Barium Ba 137.4 28 18 8 2 

cont'd 
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Table 1.14 (continued ) 

Z Name and symbol A Shells 

KLM N O P 
57 Lanthanum La 138.9 28 18 9 2 
58 Cerium Ce 140.1 28 19 9 2 
59 Praseodymium Pr 140.9 28 21 8 2 
60 Neodymium Nd 144.3 28 22 8 2 
61 Promethium Pm 147.0 28 23 8 2 
62 Samarium Sm 150.4 28 24 8 2 
63 Europium Eu 152.0 28 25 8 2 
64 Gadolinium Gd 157.3 28 25 9 2 
65 Terbium Tb 159.2 28 27 8 2 
66 Dysprosium Dy 162.5 28 28 8 2 
67 Holmium Ho 163.5 28 29 8 2 
68 Erbium Er 167.6 28 30 8 2 
69 Thulium Tm 169.4 28 31 8 2 
70 Ytterbium Yb 173.0 28 32 8 2 
71 Lutecium Lu 175.0 28 32 9 2 
72 Hafnium Hf 178.6 28 32 10 2 
73 Tantalum Ta 181.4 28 32 11 2 
74 Tungsten W 184.0 28 32 12 2 
75 Rhenium Re 186.3 28 32 13 2 
76 Osmium Os 191.5 28 32 14 2 
77 Iridium Ir 193.1 28 32 15 2 
78 Platinum Pt 195.2 28 32 17 1 
79 Gold Au 197.2 28 32 18 1 
80 Mercury Hg 200.6 28 32 18 2 
81 Thallium Tl 204.4 28 32 18 3 
82 Lead Pb 207.2 28 32 18 4 
83 Bismuth Bi 209.0 28 32 18 5 
84 Polonium Po 210.0 28 32 18 6 
85 Astatine At 211.0 28 32 18 7 
86 Radon Rn 222.0 28 32 18 8 

KLMN O P Q 
87 Francium Fr 223.0 60 18 8 1 
88 Radium Ra 226.0 60 18 8 2 
89 Actinium Ac 227.0 60 18 9 2 
90 Thorium Th 232.0 60 18 10 2 
91 Protoactinium Pa 231.0 60 20 9 2 
92 Uranium U 238.0 60 21 9 2 
93 Neptunium Np 237.0 60 22 9 2 
94 Plutonium Pu 239.0 60 24 8 2 
95 Americium Am 243.0 60 25 8 2 
96 Curium Cm 247.0 60 25 9 2 
97 Berkelium Bk 247.0 60 26 9 2 
98 Californium Cf 251.0 60 28 8 2 
99 Einsteinium Es 254.0 60 29 8 2 
100 Fermium Fm 257.0 60 30 8 2 
101 Mendelevium Md 257.0 60 31 8 2 
102 Nobelium No 254.0 60 32 8 2 
103 Lawrencium Lr 256.0 60 32 9 2 
104 Kurchatovium Ku Ð 
105 Hahnium Ha Ð 

properties with a wavelength �&�( h/mu, where h is the 
Planck constant, h �( 6.626 �( 10�34 J s. The mass m is relat-
ivistically affected by the velocity. 
When electron waves are associated with an atom, only 

certain fixed-energy states are possible. The electron can be 
raised from one state to another if it is provided, by some 
external stimulus such as a photon, with the necessary 
energy difference �w in the form of an electromagnetic 
wave of wavelength �&�( hc/�w, where c is the velocity of 
free space radiation (3 �( 108 m/s). Similarly, if an electron 

falls from a state of higher to one of lower energy, it emits 
energy �w as radiation. When electrons are raised in energy 
level, the atom is excited, but not ionised. 

1.3.2.3 Electrons in atoms 

Consider the hydrogen atom. Its single electron is not 
located at a fixed point, but can be anywhere in a region 
near the nucleus with some probability. The particular 
region is a kind of shell or cloud, of radius depending on 
the electron's energy state. 

m

With a nucleus of atomic number Z, the Z electrons can 
have several possible configurations. There is a certain 
radial pattern of electron probability cloud distribution 
(or shell pattern). Each electron state gives rise to a cloud 
pattern, characterised by a definite energy level, and 
described by the series of quantum numbers n, l, ml and 
ms. The number n(�( 1, 2, 3, . . .) is a measure of the energy 
level; l(�( 0, 1, 2, . . .) is concerned with angular momentum; 
l is a measure of the component of angular momentum in 

the direction of an applied magnetic field; and ms arises 
from the electron spin. It is customary to condense the 
nomenclature so that electron states corresponding to l �( 0, 
1, 2 and 3 are described by the letters s, p, d and f and a 
numerical prefix gives the value of n. Thus boron has 2 elec-
trons at level 1 with l �( 0, two at level 2 with l �( 0, and one 
at level 3 with l �( 1: this information is conveyed by the 
description (1s)2(2s)2(2p)1. 
The energy of an atom as a whole can vary according to 

the electron arrangement. The most stable state is that of 
minimum energy, and states of higher energy content are 
excited. By Pauli's exclusion principle the maximum possible 
number of electrons in states 1, 2, 3, 4, . . . , n are 2, 8, 18, 
32, . . . , 2n 2, respectively. Thus, only 2 electrons can occupy 
the 1s state (or K shell) and the remainder must, even for 
the normal minimum-energy condition, occupy other states. 
Hydrogen and helium, the first two elements, have, respec-
tively, 1 and 2 electrons in the 1-quantum (K) shell; the 
next, lithium, has its third electron in the 2-quantum (L) 
shell. The passage from lithium to neon results in the filling 
up of this shell to its full complement of 8 electrons. During 
the process, the electrons first enter the 2s subgroup, then 
fill the 2p subgroup until it has 6 electrons, the maximum 
allowable by the exclusion principle (see Table 1.14). 
Very briefly, the effect of the electron-shell filling is as 

follows. Elements in the same chemical family have the 
same number of electrons in the subshell that is incom-
pletely filled. The rare gases (He, Ne, Ar, Kr, Xe) have no 
uncompleted shells. Alkali metals (e.g. Na) have shells con-
taining a single electron. The alkaline earths have two elec-
trons in uncompleted shells. The good conductors (Ag, Cu, 
Au) have a single electron in the uppermost quantum state. 
An irregularity in the ordered sequence of filling (which 
holds consistently from H to Ar) begins at potassium (K) 
and continues to Ni, becoming again regular with Cu, and 
beginning a new irregularity with Rb. 
The electron of a hydrogen atom, normally at level 1, can 

be raised to level 2 by endowing it with a particular quantity 
of energy most readily expressed as 10.2 eV. (1 eV �( 1 
electron-volt �( 1.6 �( 10�19 J is the energy acquired by a free 
electron falling through a potential difference of 1 V, which 
accelerates it and gives it kinetic energy.) The 10.2 V is the 
first excitation potential for the hydrogen atom. If the 
electron is given an energy of 13.6 eV, it is freed from the 
atom, and 13.6 V is the ionisation potential. Other atoms 
have different potentials in accordance with their atomic 
arrangement. 
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Table 1.15 Elements: periodic table 

Periods Groups 
1a 2a 3b 4b 5b 6b 7b 8b 8b 8b 1b 2b 3a 4a 5a 6a 7a 0 

I 1 Metals Non-metals 2 
H He 

II  3  4  5  6  7  8  9  10  
Li Be B C N O F Ne 

III 11 12 13 14 15 16 17 18 
Na Mg Transitions Al Si P S Cl Ar 

IV 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 

V  37  38  39  40  41  42  43  44  45  46  47  48  49  50  51  52  53  54  
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 

VI 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 

VII 87 88 89 
Fr Ra Ac 

Rare earths 58 59 60 61 62 63 64 65 66 67 68 69 70 71 
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 

Actinides 90 91 92 93 94 95 96 97 98 99 100 101 102 103 
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr 

Figure 1.4 Atomic structure 

Conductivity The interaction of free electrons with the 
thermal vibrations of the ionic lattice (called `collisions' for 
brevity) causes them to `rebound' with a velocity of random 
direction but small compared with their average velocities as 
particles of an electron gas. Just as a difference of electric 
potential causes a drift in the general motion, so a difference 
of temperature between two parts of a metal carries energy 
from the hot region to the cold, accounting for thermal 
conduction and for its association with electrical conductivity. 
The free electron theory, however, is inadequate to explain 
the dependence of conductivity on crystal axes in the metal. 
At absolute zero of temperature (zero K ��273�C) 

the atoms cease to vibrate, and free electrons can pass 
through the lattice with little hindrance. At temperatures 
over the range 0.3±10 K (and usually round about 5 K) the 
resistance of certain metals, e.g. Zn, Al, Sn, Hg and Cu, 
becomes substantially zero. This phenomenon, known as 
superconductivity, has not been satisfactorily explained. 
Superconductivity is destroyed by moderate magnetic 

fields. It can also be destroyed if the current is large enough 
to produce at the surface the same critical value of magnetic 
field. It follows that during the superconductivity phase the 
current must be almost purely superficial, with a depth of 
penetration of the order of 10 mm. 

1.3.2.4 Electrons in metals 

An approximation to the behaviour of metals assumes that 
the atoms lose their valency electrons, which are free to 
wander in the ionic lattice of the material to form what is 
called an electron gas. The sharp energy levels of the free 
atom are broadened into wide bands by the proximity of 
others. The potential within the metal is assumed to be 
smoothed out, and there is a sharp rise of potential at the 
surface which prevents the electrons from escaping: there is 
a potential-energy step at the surface which the electrons 
cannot normally overcome: it is of the order of 10 eV. If 
this is called W, then the energy of an electron wandering 

2within the metals is �W +1 mu .2 
The electrons are regarded as undergoing continual 

collisions on account of the thermal vibrations of the lattice, 
and on Fermi-Dirac statistical theory it is justifiable to treat 
the energy states (which are in accordance with Pauli's 
principle) as forming an energy continuum. At very low 
temperatures the ordinary classical theory would suggest 
that electron energies spread over an almost zero range, but 
the exclusion principle makes this impossible and even at 
absolute zero of temperature the energies form a continuum, 
and physical properties will depend on how the electrons are 
distributed over the upper levels of this energy range. 
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Table 1.16 Physical properties of metals 

Approximate general properties at normal temperatures: 

�& density [kg/m3] k thermal conductivity [W/(m K)] 
E elastic modulus [GPa] Tm melting point [K] 
e linear expansivity [mm/(m K)] �& resistivity [n
 m] 
c specific heat capacity [kJ/(kg K)] �& resistance±temperature coefficient [m
/(
 K)] 

Metal �& E e c k Tm �& �&

Pure metals 
4 Beryllium 1840 300 120 1700 170 1560 33 9.0 
11 Sodium 970 Ð 71 710 130 370 47 5.5 
12 Magnesium 1740 44 26 1020 170 920 46 3.8 
13 Aluminium 2700 70 24 900 220 930 27 4.2 
19 Potassium 860 Ð 83 750 130 340 67 5.4 
20 Calcium 1550 Ð 22 650 96 1120 43 4.2 
24 Chromium 7100 25 8.5 450 43 2170 130 3.0 
26 Iron 7860 220 12 450 75 1810 105 6.5 
27 Cobalt 8800 210 13 420 70 1770 65 6.2 
28 Nickel 8900 200 13 450 70 1730 78 6.5 
29 Copper 8930 120 16 390 390 1360 17 4.3 
30 Zinc 7100 93 26 390 110 690 62 4.1 
42 Molybdenum 10 200 Ð 5 260 140 2890 56 4.3 
47 Silver 10 500 79 19 230 420 1230 16 3.9 
48 Cadmium 8640 60 32 230 92 590 75 4.0 
50 Tin 7300 55 27 230 65 500 115 4.3 
73 Tantalum 16 600 190 6.5 140 54 3270 155 3.1 
74 Tungsten 19 300 360 4 130 170 3650 55 4.9 
78 Platinum 21 500 165 9 130 70 2050 106 3.9 
79 Gold 19 300 80 14 130 300 1340 23 3.6 
80 Mercury 13 550 Ð 180 140 10 230 960 0.9 
82 Lead 11 300 15 29 130 35 600 210 4.1 
83 Bismuth 9800 32 13 120 9 540 1190 4.3 
92 Uranium 18 700 13 Ð 120 Ð 1410 220 2.1 

Alloys 
Brass (60 Cu, 40 Zn) 8500 100 21 380 120 1170 60 2.0 
Bronze (90 Cu, 10 Sn) 8900 100 19 380 46 1280 Ð Ð 
Constantan 8900 110 15 410 22 1540 450 0.05 
Invar (64 Fe, 36 Ni) 8100 145 2 500 16 1720 100 2.0 
Iron, soft (0.2 C) 7600 220 12 460 60 1800 140 Ð 
Iron cast (3.5 C, 2.5 Si) 7300 100 12 460 60 1450 Ð Ð 
Manganin 8500 130 16 410 22 1270 430 0.02 
Steel (0.85 C) 7800 200 12 480 50 1630 180 Ð 

Electron emission A metal may be regarded as a potential 
`well' of depth �V relative to its surface, so that an electron 
in the lowest energy state has (at absolute zero temperature) 
the energy W �(Ve (of the order 10 eV): other electrons 
occupy levels up to a height "* (5±8 eV) from the bottom 
of the `well'. Before an electron can escape from the surface 
it must be endowed with an energy not less than �&�( W�"*, 
called the work function. 
Emission occurs by surface irradiation (e.g. with light) of 

frequency v if the energy quantum hv of the radiation is at 
least equal to �. The threshold of photoelectric emission is 
therefore with radiation at a frequency not less than v �(�/h. 
Emission takes place at high temperatures if, put simply, 

the kinetic energy of electrons normal to the surface is great 
enough to jump the potential step W. This leads to an 
expression for the emission current i in terms of temperature 
T, a constant A and the thermionic work function �: 

i �( AT2 exp���=kT �(
Electron emission is also the result of the application of 

a high electric field intensity (of the order 1±10 GV/m) to a 

metal surface; also when the surface is bombarded with 
electrons or ions of sufficient kinetic energy, giving the effect 
of secondary emission. 

Crystals When atoms are brought together to form a 
crystal, their individual sharp and well-defined energy levels 
merge into energy bands. These bands may overlap, or there 
may be gaps in the energy levels available, depending on the 
lattice spacing and interatomic bonding. Conduction can 
take place only by electron migration into an empty or 
partly filled band; filled bands are not available. If an elec-
tron acquires a small amount of energy from the externally 
applied electric field, and can move into an available empty 
level, it can then contribute to the conduction process. 

1.3.2.5 Insulators 

In this case the `distance' (or energy increase �w in electron-
volts) is too large for moderate electric applied fields to 
endow electrons with sufficient energy, so the material 
remains an insulator. High temperatures, however, may 
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Table 1.17 Physical properties of non-metals 

Approximate general properties: 
�& density [kg/m3] Tm melting point [K] 
e linear expansivity [mm/(m K)] �& resistivity [M
 m] 
c specific heat capacity [kJ/(kg K)] �r relative permittivity [�] 
k thermal conductivity [W/(m K)] 

Material �& e c k Tm �& "&r 

Asbestos (packed) 580 Ð 0.84 0.19 Ð Ð 3 
Bakelite 1300 30 0.92 0.20 Ð 0.1 7 
Concrete (dry) 
Diamond 

2000 
3510 

10 
1.3 

0.92 
0.49 

1.70 
165 

Ð 
4000 

Ð 
107 

Ð 
Ð 

Glass 2500 8 0.84 0.93 Ð 106 8 
Graphite 
Marble 

2250 
2700 

2 
12 

0.69 
0.88 

160 
3 

3800 
Ð 

10�11 

103 
Ð 
8.5 

Mica 2800 3 0.88 0.5 Ð 108 7 
Nylon 
Paper 
Paraffin wax 

1140 
900 
890 

100 
Ð 
110 

1.7 
Ð 
2.9 

0.3 
0.18 
0.26 

Ð 
Ð 
Ð 

Ð 
104 

109 

Ð 
2 
2 

Perspex 1200 80 1.5 1.9 Ð 1014 3 
Polythene 
Porcelain 

930 
2400 

180 
3.5 

2.2 
0.8 

0.3 
1.0 

Ð 
1900 

Ð 
106 

2.3 
6 

Quartz (fused) 
Rubber 

2200 
1250 

0.4 
Ð 

0.75 
1.5 

0.22 
0.15 

2000 
Ð 

1014 

107 
3.8 
3 

Silicon 2300 7 0.75 Ð 1690 0.1 2.7 

Table 1.18 Physical properties of liquids 

Average values at 20�C (293 K): 

�& density [kg/m3] k thermal conductivity [W/(m K)] 
v 
e 

viscosity [mPa s] 
cubic expansivity [10�3/K] 

Tm 
Tb 

melting point [K] 
boiling point [K] 

c specific heat capacity [kJ/(kg K)] "&r relative permittivity [�] 

Liquid �& v e c k Tm Tb "&r 

Acetone (CH3)2CO 792 0.3 1.43 2.2 0.18 178 329 22 
Benzine C6H6 881 0.7 1.15 1.7 0.14 279 353 2.3 
Carbon disulphide CS2 1260 0.4 1.22 1.0 0.14 161 319 2.6 
Carbon tetrachloride CCl4 1600 1.0 1.22 0.8 0.10 250 350 2.2 
Ether (C2H5)2O 716 0.2 1.62 2.3 0.14 157 308 4.3 
Glycerol C3H5(OH)3 1270 1500 0.50 2.4 0.28 291 563 56 
Methanol CH3OH 793 0.6 1.20 1.2 0.21 175 338 32 
Oil Ð 850 85 0.75 1.6 0.17 Ð Ð 3.0 
Sulphuric acid H2SO4 1850 28 0.56 1.4 Ð 284 599 Ð 
Turpentine C10H16 840 1.5 0.10 1.8 0.15 263 453 2.3 
Water H2O 1000 1.0 0.18 4.2 0.60 273 373 81 

result in sufficient thermal agitation to permit electrons to 
`jump the gap'. 

1.3.2.6 Semiconductors 

Intrinsic semiconductors (i.e. materials between the good 
conductors and the good insulators) have a small spacing 
of about 1 eV between their permitted bands, which affords 
a low conductivity, strongly dependent on temperature and 
of the order of one-millionth that of a conductor. 
Impurity semiconductors have their low conductivity 

raised by the presence of minute quantities of foreign 
atoms (e.g. 1 in 108) or by deformations in the crystal struc-
ture. The impurities `donate' electrons of energy level that 
can be raised into a conduction band (n-type); or they can 

attract an electron from a filled band to leave a `hole', or 
electron deficiency, the movement of which corresponds to 
the movement of a positive charge (p-type). 

1.3.2.7 Magnetism 

Modern magnetic theory is very complex, with ramifica-
tions in several branches of physics. Magnetic phenomena 
are associated with moving charges. Electrons, considered 
as particles, are assumed to possess an axial spin, which 
gives them the effect of a minute current turn or of a 
small permanent magnet, called a Bohr magneton. The gyro-
scopic effect of electron spin develops a precession when a 
magnetic field is applied. If the precession effect exceeds the 
spin effect, the external applied magnetic field produces less 
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Table 1.19 Physical properties of gases 

Values at 0�C (273 K) and atmospheric pressure: 

c

�& density [kg/m3] k thermal conductivity [m W/(m K)]

v viscosity [mPa s] Tm melting point [K]

p specific heat capacity [kJ/(kg K)] Tb boiling point [K]

cp/cv ratio between specific heat capacity at constant pressure


and at constant volume 

Gas �& v cp cp/cv k Tm Tb 

Air 
Ammonia 
Carbon dioxide 
Carbon monoxide 
Chlorine 
Deuterium 
Ethane 
Fluorine 
Helium 
Hydrogen 
Hydrogen chloride 
Krypton 
Methane 
Neon 
Nitrogen 
Oxygen 
Ozone 
Propane 
Sulphur dioxide 
Xenon 

O
O
N

H

F

Ð 
NH3 
CO2 
CO 
Cl2 
D 
C2H6 

2 
He 
2 

HCl 
Kr 
CH4 
Ne 
2 

2 

3 
C3H8 
SO2 
Xe 

1.293 
0.771 
1.977 
1.250 
3.214 
0.180 
1.356 
1.695 
0.178 
0.090 
1.639 
3.740 
0.717 
0.900 
1.251 
1.429 
2.220 
2.020 
2.926 
5.890 

17.0 
9.3 
13.9 
16.4 
12.3 
Ð 
8.6 
Ð 
18.6 
8.5 
13.8 
23.3 
10.2 
29.8 
16.7 
19.4 
Ð 
7.5 
11.7 
22.6 

1.00 
2.06 
0.82 
1.05 
0.49 
Ð 
1.72 
0.75 
5.1 
14.3 
0.81 
Ð 
2.21 
1.03 
1.04 
0.92 
Ð 
1.53 
0.64 
Ð 

1.40 
1.32 
1.31 
1.40 
1.36 
1.73 
1.22 
Ð 
1.66 
1.41 
1.41 
1.68 
1.31 
1.64 
1.40 
1.40 
1.29 
1.13 
1.27 
1.66 

24 
22 
14 
23 
7.6 

Ð 
18 
Ð 
144 
174 
Ð 
8.7 
30 
46 
24 
25 
Ð 
15 
8.4 
5.2 

Ð 
195 
216* 
68 
171 
18 
89 
50 
1.0 
14 
161 
116 
90 
24 
63 
55 
80 
83 
200 
161 

Ð 
240 
194 
81 
239 
23 
184 
85 
4.3 
20 
189 
121 
112 
27 
77 
90 
161 
231 
263 
165 

*At pressure of 5 atm. 

magnetisation than it would in free space, and the material of 
which the electron is a constituent part is diamagnetic. If the 
spin effect exceeds that due to precession, the material is 
paramagnetic. The spin effect may, in certain cases, be very 
large, and high magnetisations are produced by an external 
field: such materials are ferromagnetic. 
An iron atom has, in the n �( 4 shell (N), electrons that 

give it conductive properties. The K, L and N shells have 
equal numbers of electrons possessing opposite spin direc-
tions, so cancelling. But shell M contains 9 electrons spin-
ning in one direction and 5 in the other, leaving 4 net 
magnetons. Cobalt has 3, and nickel 2. In a solid metal 
further cancellation occurs and the average number of 
unbalanced magnetons is: Fe, 2.2; Co, 1.7; Ni, 0.6. 
In an iron crystal the magnetic axes of the atoms are 

aligned, unless upset by excessive thermal agitation. (At 
770�C for Fe, the Curie point, the directions become 
random and ferromagnetism is lost.) A single Fe crystal 
magnetises most easily along a cube edge of the structure. 
It does not exhibit spontaneous magnetisation like a per-
manent magnet, however, because a crystal is divided into 
a large number of domains in which the various magnetic 
directions of the atoms form closed paths. But if a crystal 
is exposed to an external applied magnetic field, (a) the elec-
tron spin axes remain initially unchanged, but those 
domains having axes in the favourable direction grow at 
the expense of the others (domain wall displacement); and 
(b) for higher field intensities the spin axes orientate into the 
direction of the applied field. 
If wall movement makes a domain acquire more internal 

energy, then the movement will relax again when the exter-
nal field is removed. But if wall movement results in loss 
of energy, the movement is non-reversibleÐi.e. it needs 

Table 1.20 Characteristic temperatures 

Temperature T [kelvin] corresponds to �c �(T � 273.15 
[degree Celsius] and to �f �( �c (9/5)�32 [degree Fahrenheit]. 

Condition T �c �f 

Absolute zero 0 �273.15 �459.7 
Boiling point of oxygen 90.18 �182.97 �297.3 
Zero of Fahrenheit scale 255.4 �17.78 0 
Melting point of ice 273.15 0 32.0 
Triple point of water 273.16 0.01 32.02 
Maximum density of water 277.13 3.98 39.16 
`Normal' ambient 293.15 20 68 
Boiling point of water 373.15 100 212 
Boiling point of sulphur 717.8 444.6 832 
Freezing point of silver 1234 962 1762 
Freezing point of gold 1336 1064 1945 

external force to reverse it. This accounts for hysteresis and 
remanence phenomena. 
The closed-circuit self-magnetisation of a domain gives it a 

mechanical strain. When the magnetisation directions of 
individual domains are changed by an external field, the 
strain directions alter too, so that an assembly of domains 
will tend to lengthen or shorten. Thus, readjustments in the 
crystal lattice occur, with deformations (e.g. 20 parts in 106) 
in one direction. This is the phenomenon of magnetostriction. 
The practical art of magnetics consists in control of mag-

netic properties by alloying, heat treatment and mechanical 
working to produce variants of crystal structure and conse-
quent magnetic characteristics. 
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Table 1.21 General physical constants (approximate values, to five significant figures) 

Quantity Symbol Numerical value Unit 

Acceleration of free fall (standard) 
Atmospheric pressure (standard) 
Atomic mass unit 
Avogadro constant 
Bohr magneton 
Boltzmann constant 

gn 
p0 
u 
NA 
�B 
k 

9.8066 
1.0132 �( 105 

1.6606 �( 10�27 

6.0220 �( 1023 

9.2741 �( 10�24 

1.3807 �( 10�23 

m/s2 

Pa 
kg 
mol�1 

J/T, A m 2 

J/K 
Electron 
charge 
mass 
charge/mass ratio 

Faraday constant 

�e 
me 
e/me 
F 

1.6022 �( 10�19 

9.1095 �( 10�31 

1.7588 �( 1011 

9.6485 �( 104 

C 
kg 
C/kg 
C/mol 

Free space 
electric constant "&0 8.8542 �( 10�12 F/m 
intrinsic impedance 
magnetic constant 
speed of electromagnetic waves 

Gravitational constant 

Z0 
�0 
c 
G 

376.7 
4�&�( 10�7 

2.9979 �( 108 

6.6732 �( 10�11 


 
H/m 
m/s 
Nm2/kg2 

Ideal molar gas constant 
Molar volume at s.t.p. 
Neutron rest mass 
Planck constant 

R 
Vm 
mn 
h 

8.3144 
2.2414 �( 10�2 

1.6748 �( 10�27 

6.6262 �( 10�34 

J/(mol K) 
m 3/mol 
kg 
J s  

normalised h/2�& 1.0546 �( 10�34 J s  
Proton 
charge 
rest mass 
charge/mass ratio 

Radiation constants 

� e 
mp 
e/mp 
c1 

1.6022 �( 10�19 

1.6726 �( 10�27 

0.9579 �( 108 

3.7418 �( 10�16 

C 
kg 
C/kg 
Wm2 

c2 1.4388 �( 10�2 mK  
Rydberg constant 
Stefan-Boltzmann constant 
Wien constant 

RH 
�&
kw 

1.0968 �( 107 

5.6703 �( 10�8 

2.8978 �( 10�3 

m �1 

J/(m2 K4) 
mK  

1.4 Physical properties 

The nature, characteristics and properties of materials arise 
from their atomic and molecular structure. Tables of 
approximate values for the physical properties of metals, 
non-metals, liquids and gases are appended, together with 
some characteristic temperatures and the numerical values 
of general physical constants. 

1.5 Electricity 

In the following paragraphs electrical phenomena are 
described in terms of the effects of electric charge, at a 
level adequate for the purpose of simple explanation. 
In general, charges may be at rest, or in motion, or in 

acceleration. At rest, charges have around them an electric 
(or electrostatic) field of force. In motion they constitute a 
current, which is associated with a magnetic (or electro-
dynamic) field of force additional to the electric field. In 
acceleration, a third field component is developed which 
results in energy propagation by electromagnetic waves. 

1.5.1 Charges at rest 

Figure 1.5 shows two bodies in air, charged by applying 
between them a potential difference, or (having been in 
close contact) by forcibly separating them. Work must 
have been done in a physical sense to produce on one an 
excess and on the other a deficiency of electrons, so that 

the system is a repository of potential energy. (The work 
done in separating charges is measured by the product of 
the charges separated and the difference of electrical poten-
tial that results.) Observation of the system shows certain 
effects of interest: (1) there is a difference of electric poten-
tial between the bodies depending on the amount of charge 
and the geometry of the system; (2) there is a mechanical 
force of attraction between the bodies. These effects are 
deemed to be manifestations of the electric field between 
the bodies, described as a special state of space and depicted 
by lines of force which express in a pictorial way the strength 
and direction of the force effects. The lines stretch between 
positive and negative elements of charge through the med-
ium (in this case, air) which separates the two charged 
bodies. The electric field is only a conceptÐfor the lines 
have no real existenceÐused to calculate various effects pro-
duced when charges are separated by any method which 
results in excess and deficiency states of atoms by electron 
transfer. Electrons and protons, or electrons and positively 
ionised atoms, attract each other, and the stability of the 
atom may be considered due to the balance of these attrac-
tions and dynamic forces such as electron spin. Electrons are 
repelled by electrons and protons by protons, these forces 
being summarised in the rules, formulated experimentally 
long before our present knowledge of atomic structure, that 
`like charges repel and unlike charges attract one another'. 

1.5.2 Charges in motion 

In substances called conductors, the outer shell electrons 
can be more or less freely interchanged between atoms. 
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Figure 1.5 Charged conductors and their electric field 

In copper, for example, the molecules are held together 
comparatively rigidly in the form of a `lattice'Ðwhich 
gives the piece of copper its permanent shapeÐthrough the 
interstices of which outer electrons from the atoms can be 
interchanged within the confines of the surface of the piece, 
producing a random movement of free electrons called an 
`electron atmosphere'. Such electrons are responsible for the 
phenomenon of electrical conductivity. 
In other substances called insulators, all the electrons are 

more or less firmly bound to their parent atoms, so that little 
or no relative interchange of electron charges is possible. 
There is no marked line of demarcation between conductors 
and insulators, but the copper group metals, in the order silver, 
copper, gold, are outstanding in the series of conductors. 

1.5.2.1 Conduction 

Conduction is the name given to the movement of electrons, 
or ions, or both, giving rise to the phenomena described by 
the term electric current. The effects of a current include a 
redistribution of charges, heating of conductors, chemical 
changes in liquid solutions, magnetic effects, and many 
subsidiary phenomena. 
If at a specified point on a conductor (Figure 1.6) n1 

carriers of electric charge (they can be water-drops, ions, 
dust particles, etc.) each with a positive charge e1 arrive per 
second, and n2 carriers (such as electrons) each with a nega-
tive charge e2 arrive in the opposite direction per second, the 
total rate of passing of charge is n1e1 � n2e2, which is the 
charge per second or current. A study of conduction con-
cerns the kind of carriers and their behaviour under given 
conditions. Since an electric field exerts mechanical forces 
on charges, the application of an electric field (i.e. a poten-
tial difference) between two points on a conductor will 
cause the movement of charges to occur, i.e. a current to 
flow, so long as the electric field is maintained. 
The discontinuous particle nature of current flow is an 

observable factor. The current carried by a number of elec-
tricity carriers will vary slightly from instant to instant with 
the number of carriers passing a given point in a conductor. 
Since the electron charge is 1.6�10�19 C, and the passage 
of one coulomb per second (a rate of flow of one ampere) 
corresponds to 1019/1.6 �( 6.3�1018 electron charges per 
second, it follows that the discontinuity will be observed 

Figure 1.6 Conduction by charge carriers 

Figure 1.7 Electronic conduction in metals 

only when the flow comprises the very rapid movement of 
a few electrons. This may happen in gaseous conductors, 
but in metallic conductors the flow is the very slow drift 
(measurable in mm/s) of an immense number of electrons. 
A current may be the result of a two-way movement of 

positive and negative particles. Conventionally the direction 
of current flow is taken as the same as that of the positive 
charges and against that of the negative ones. 

1.5.2.2 Metals 

Reference has been made above to the `electron atmo-
sphere' of electrons in random motion within a lattice of 
comparatively rigid molecular structure in the case of 
copper, which is typical of the class of good metallic con-
ductors. The random electronic motion, which intensifies with 
rise in temperature, merges into an average shift of charge 
of almost (but not quite) zero continuously (Figure 1.7). 
When an electric field is applied along the length of a conduc-
tor (as by maintaining a potential difference across its ends), 
the electrons have a drift towards the positive end superim-
posed upon their random digressions. The drift is slow, but 
such great numbers of electrons may be involved that very 
large currents, entirely due to electron drift, can be produced 
by this means. In their passage the electrons are impeded by 
the molecular lattice, the collisions producing heat and the 
opposition called resistance. The conventional direction of cur-
rent flow is actually opposite to that of the drift of charge, 
which is exclusively electronic. 

1.5.2.3 Liquids 

Liquids are classified according to whether they are non-
electrolytes (non-conducting) or electrolytes (conducting). 
In the former the substances in solution break up into 
electrically balanced groups, whereas in the latter the 
substances form ions, each a part of a single molecule with 
either a positive or a negative charge. Thus, common salt, 
NaCl, in a weak aqueous solution breaks up into sodium 
and chlorine ions. The sodium ion Na�( is a sodium atom 
less one electron; the chlorine ion Cl�( is a chlorine atom 
with one electron more than normal. The ions attach them-
selves to groups of water molecules. When an electric field is 
applied, the sets of ions move in opposite directions, and 
since they are much more massive than electrons, the con-
ductivity produced is markedly inferior to that in metals. 
Chemical actions take place in the liquid and at the elect-
rodes when current passes. Faraday's Electrolysis Law states 
that the mass of an ion deposited at an electrode by electro-
lyte action is proportional to the quantity of electricity 
which passes and to the chemical equivalent of the ion. 

1.5.2.4 Gases 

Gaseous conduction is strongly affected by the pressure of 
the gas. At pressures corresponding to a few centimetres 
of mercury gauge, conduction takes place by the movement 
of positive and negative ions. Some degree of ionisation is 
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Figure 1.8 Conduction in low-pressure gas 

always present due to stray radiations (light, etc.). The elec-
trons produced attach themselves to gas atoms and the sets 
of positive and negative ions drift in opposite directions. 
At very low gas pressures the electrons produced by ionisa-
tion have a much longer free path before they collide with a 
molecule, and so have scope to attain high velocities. Their 
motional energy may be enough to shockionise neutral 
atoms, resulting in a great enrichment of the electron stream 
and an increased current flow. The current may build up to 
high values if the effect becomes cumulative, and eventually 
conduction may be effected through a spark or arc. 
In a vacuum conduction can be considered as purely 

electronic, in that any electrons present (there can be no 
molecular matter present in a perfect vacuum) are moved 
in accordance with the force exerted on them by an applied 
electric field. The number of electrons is small, and 
although high speeds may be reached, the conduction is 
generally measurable only in milli- or microamperes. 
Some of the effects are illustrated in Figure 1.8, represent-

ing part of a vessel containing a gas or vapour at low pres-
sure. At the bottom is an electrode, the cathode, from the 
surface of which electrons are emitted, generally by heating 
the cathode material. At the top is a second electrode, the 
anode, and an electric field is established between the electro-
des. The field causes electrons emitted from the cathode to 
move upward. In their passage to the anode these electrons 
will encounter gas molecules. If conditions are suitable, the 
gas atoms are ionised, becoming in effect positive charges 
associated with the nuclear mass. Thereafter the current is 
increased by the detached electrons moving upwards and 
by the positive ions moving more slowly downwards. In 
certain devices (such as the mercury arc rectifier) the impact 
of ions on the cathode surface maintains its emission. The 
impact of electrons on the anode may be energetic enough to 
cause the secondary emission of electrons from the anode 
surface. If the gas molecules are excluded and a vacuum is 
established, the conduction becomes purely electronic. 

1.5.2.5 Insulators 

If an electric field is applied to a perfect insulator, whether 
solid, liquid or gaseous, the electric field affects the atoms 
by producing a kind of `stretching' or `rotation' which 
displaces the electrical centres of negative and positive in 
opposite directions. This polarisation of the dielectric insu-
lating material may be considered as taking place in the 
manner indicated in Figure 1.9. Before the electric field is 

Figure 1.9 Polarisation and breakdown in insulator 

applied, the atoms of the insulator are neutral and 
unstrained; as the potential difference is raised the electric 
field exerts opposite mechanical forces on the negative and 
positive charges and the atoms become more and more 
highly strained (Figure 1.9(a)). On the left face the atoms 
will all present their negative charges at the surface: on the 
right face, their positive charges. These surface polarisations 
are such as to account for the effect known as permittivity. 
The small displacement of the atomic electric charges con-
stitutes a polarisation current. Figure 1.9(b) shows that, for 
excessive electric field strength, conduction can take place, 
resulting in insulation breakdown. 
The electrical properties of metallic conductors and of 

insulating materials are listed in Tables 1.22 and 1.23. 

1.5.2.6 Convection current 

Charges can be moved mechanically, on belts, water-drops, 
dust and mist particles, and by beams of high-speed electrons 
(as in a cathode ray oscilloscope). Such movement, indepen-
dent of an electric field, is termed a convection current. 

1.5.3 Charges in acceleration 

Reference has been made to the emission of energy 
(photons) when an electron falls from an energy level to a 
lower one. Radiation has both a particle and a wave nature, 
the latter associated with energy propagation through 
empty space and through transparent media. 

1.5.3.1 Maxwell equations 

Faraday postulated the concept of the field to account for 
`action at a distance' between charges and between magnets. 
Maxwell (1873) systematised this concept in the form 
of electromagnetic field equations. These refer to media 
in bulk. They naturally have no direct relation to the elec-
tronic nature of conduction, but deal with the fluxes of elec-
tric, magnetic and conduction fields, their flux densities, 
and the bulk material properties (permittivity ", permeabil-
ity �& and conductivity �) of the media in which the fields 
exist. To the work of Faraday. AmpeÁ re and Gauss, 
Maxwell added the concept of displacement current. 

Displacement current Around an electric field that changes 
with time there is evidence of a magnetic field. By analogy 
with the magnetic field around a conduction current, the 
rate of change of an electric field may be represented by 
the presence of a displacement current. The concept is 
applicable to an electric circuit containing a capacitor: 
there is a conduction current ic in the external circuit but 
not between the electrodes of the capacitor. The capacitor, 
however, must be acquiring or losing charge and its electric 
field must be changing. If the rate of change is represented 
by a displacement current id �( ic, not only is the magnetic 
field accounted for, but also there now exists a `continuity' 
of current around the circuit. 
Displacement current is present in any material medium, 

conducting or insulating, whenever there is present an 



//integras/b&h/eer/Final_06-09-02/eerc001

Electricity 1/29 

Table 1.22 Electrical properties of conductors  

Typical approximate values at 293 K (20 �C): 

g conductivity relative to I.S.A.C. [%]

�& resistivity [n
 m]

�& resistance±temperature coefficient [m
/(
 K)]


Material	 g � �&

International standard 
annealed copper (ISAC) 

Copper 
annealed 
hard-drawn 

Brass (60/40) 
cast 
rolled 

Bronze 
Phosphor-bronze 
Cadmium-copper, hard-drawn 
Copper-clad steel, hard-drawn 
Aluminium 
cast

hard-drawn

duralumin


Iron 
wrought 
cast 
grey

white

malleable

nomag


Steel 
0.1% C 
0.4% C 
core 
1% Si

2% Si

4% Si


wire 
galvanised 
45 ton 
80 ton 

Resistance alloys* 
80 Ni, 20 Cr 
59 Ni, 16 Cr, 25 Fe 
37 Ni, 18 Cr, 2 Si, 43 Fe 
45 Ni, 54 Cu 
20 Ni, 80 Cu 
15 Ni, 62 Cu, 22 Zn 
4 Ni, 84 Cu, 12 Mn 

Gold 
Lead 
Mercury 
Molybdenum 
Nickel 
Platinum 
Silver 
annealed 
hard-drawn 

Tantalum 
Tungsten 
Zinc 

100 17.2 3.93 

99 17.3 3.90 
97 17.7 3.85 

23 75 1.6 
19 90 1.6 
48 36 1.65 
29±14 6±12 1.0 
82±93 21±18 4.0 
30±40 57±43 3.75 

66 26 3.90 
62 28 3.90 
36 47 Ð 

16 107 5.5 

2.5 700 Ð 
1.7 1000 2.0 
5.9 300 Ð 
1.1 1600 4.5 

8.6 200 4.2 
11 160 4.2 

10 170 Ð 
4.9 350 Ð 
3.1 550 Ð 

12 140 4.4 
10 170 3.4 
8 215 3.4 

(1) 1.65 1090 0.1 
(2) 1.62 1100 0.2 
(3) 1.89 1080 0.26 
(4) 3.6 490 0.04 
(5) 6.6 260 0.29 
(6) 5.0 340 0.25 
(7)	 3.6 480 0.0 

73 23.6 3.0 
7.8 220 4.0 
1.8 955 0.7 
30 57 4.0 
12.6 136 5.0 
14.7 117 3.9 

109 15.8 4.0 
98.5 17.5 4.0 
11.1 155 3.1 
31 56 4.5 
28 62 4.0 

*Resistance alloys: (1) furnaces, radiant elements; (2) electric irons, tubular heaters; 
(3) furnace elements; (4) control resistors; (5) cupro; (6) German silver, platinoid; 
(7) Manganin. 

electric field that changes with time. There is a displacement 
current along a copper conductor carrying an alternating 
current, but the conduction current is vastly greater even at 
very high frequencies. In poor conductors and in insulating 
materials the displacement current is comparable to (or 
greater than) the conduction current if the frequency is 
high enough. In free space and in a perfect insulator only 
displacement current is concerned. 

Equations The following symbols are used, the SI unit of 
each appended. The permeability and permittivity are 
absolute values (�&�(�r�0, "&�( "&r "&0). Potentials and fluxes 
are scalar quantities: field strength and flux density, also 
surface and path-length elements, are vectorial. 

Field Electric Magnetic Conduction 

Potential V [V] F [A] V [V] 
Field strength E [V/m] H [A/m] E [V/m] 
Flux 
Flux density 

Q [C] 
D [C/m2] 

�& [Wb] 
B [T] 

I [A] 
J [A/m2] 

Material property "& [F/m] �& [H/m] �& [S/m] 

The total electric flux emerging from a charge �Q or 
entering a charge �Q is equal to Q. The integral of the elec-
tric flux density D over a closed surface s enveloping the 
charge is �#
D �( ds �( Q	 �1:1�(

s 

If the surface has no enclosed charge, the integral is zero. 
This is the Gauss law. 
The magnetomotive force F, or the line integral of the 

magnetic field strength H around a closed path l, is equal 
to the current enclosed, i.e. �#
H �( dl �( F �( ic �( id �1:2�(

o 

This is the AmpeÁ re law with the addition of displacement 
current. 
The Faraday law states that, around any closed path l 

encircling a magnetic flux �& that changes with time, there 
is an electric field, and the line integral of the electric field 
strength E around the path is �#
E �( dl �( e � ��d�=dt�	 �1:3�(

o 

Magnetic flux is a solenoidal quantity, i.e. it comprises a 
structure of closed loops; over any closed surface s in a mag-
netic field as much flux leaves the surface as enters it. The sur-
face integral of the flux density B is therefore always zero, i.e. �#
B �( ds �( 0	 �1:4�(

s 

To these four laws are added the constitutive equations, 
which relate the flux densities to the properties of the 
media in which the fields are established. The first two are, 
respectively, electric and magnetic field relations; the third 
relates conduction current density to the voltage gradient in 
a conducting medium; the fourth is a statement of the dis-
placement current density resulting from a time rate of 
change of the electric flux density. The relations are 

D �( "E; B �( �H; Jc �( �E; Jd �( @D=@t 
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Table 1.23 Electrical properties of insulating materials  

Typical approximate values (see also Section 1.4): 

"&r relative permittivity 
E electric strength [MV/m] 
tan �& loss tangent 
�& maximum working temperature [�C] 
k 
G 

thermal conductivity 
density 

[mW/(m K)] 
[kg/m3] 

Material "&r E tan �& �& k G 

Air at n.t.p. 1.0 3 Ð Ð 25 1.3 
Alcohol 26 Ð Ð Ð 180 790 
Asbestos 2 2 Ð 400 80 3000 
paper 2 2 Ð 250 250 1200 

Bakelite moulding 4 6 0.03 130 Ð 1600 
paper 5 15 0.03 100 270 1300 

Bitumen 
pure 2.7 1.6 Ð 50 150 1200 
vulcanised 4.5 5 Ð 100 200 1250 

Cellulose film 5.8 28 Ð Ð Ð 800 
Cotton fabric 
dry Ð 0.5 Ð 95 80 Ð 
impregnated Ð 2 Ð 95 250 Ð 

Ebonite 2.8 50 0.005 80 150 1400 
Fabric tape, impregnated 5 17 0.1 95 240 Ð 
Glass 
flint 6.6 6 Ð Ð 1100 4500 
crown 4.8 6 0.02 Ð 600 2200 
toughened 5.3 9 0.003 Ð Ð Ð 

Gutta-percha 4.5 Ð 0.02 Ð 200 980 
Marble 7 2 0.03 Ð 2600 2700 
Mica 6 40 0.02 750 600 2800 
Micanite Ð 15 Ð 125 150 2200 
Oil 
transformer 2.3 Ð Ð 85 160 870 
castor 4.7 8 Ð Ð Ð 970 

Paper 
dry 2.2 5 0.007 90 130 820 
impregnated 3.2 15 0.06 90 140 1100 

Porcelain 5.7 15 0.008 1000 1000 2400 
Pressboard 6.2 7 Ð 95 170 1100 
Quartz 
fused 3.5 13 0.002 1000 1200 2200 
crystalline 4.4 Ð Ð Ð Ð 2700 

Rubber 
pure 2.6 18 0.005 50 100 930 
vulcanised 4 10 0.01 70 250 1500 
moulding 4 10 Ð 70 Ð Ð 

Resin 3 Ð Ð Ð Ð 1100 
Shellac 3 11 Ð 75 250 1000 
paper 5.5 11 0.05 80 Ð 1350 

Silica, fused 3.6 14 Ð Ð Ð Ð 
Silk Ð Ð Ð 95 60 1200 
Slate Ð 0.5 Ð Ð 2000 2800 
Steatite Ð 0.6 Ð 1500 2000 2600 
Sulphur 4 Ð 0.0003 100 220 2000 
Water 70 Ð Ð Ð 570 1000 
Wax (paraffin) 2.2 12 0.0003 35 270 860 

In electrotechnology concerned with direct or low-
frequency currents, the Maxwell equations are rarely used 
in the form given above. Equation (1.2), for example, 
appears as the number of amperes (or ampere-turns) 
required to produce in an area a the specified magnetic 
flux �&�Ba ��Ha. Equation (1.3) in the form e ��(d�/dt) 

gives the e.m.f. in a transformer primary or secondary turn. 
The concept of the `magnetic circuit' embodies Equation 
(1.4). But when dealing with such field phenomena as the 
eddy currents in massive conductors, radio propagation 
or the transfer of energy along a transmission line, the 
Maxwell equations are the basis of analysis. 
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Figure 1.10 Electromagnetic wave propagation 

1.5.3.2 Electromagnetic wave 

The local `induction' field of a charge at rest surrounds it in 
a predictable pattern. Let the position of the charge be sud-
denly displaced. The field pattern also moves, but because 
of the finite rate of propagation there will be a region in 
which the original field has not yet been supplanted by the 
new. At the instantaneous boundary the electric field pat-
tern may be pictured as `kinked', giving a transverse electric 
field component that travels away from the charge. Energy 

Electricity 1/31 

is propagated, because the transverse electric field is accom-
panied by an associated transverse magnetic field in accord-
ance with the AmpeÁ re law. 
Consider a unit cube of free space (Figure 1.10) 

approached by a transverse electric field of strength E at a 
velocity u in the specified direction. As E enters the cube, it 
produces therein an electric flux, of density D � "&0E increas-
ing at the rate Du. This is a displacement current which 
produces a magnetic field of strength H and flux density 
B �( �0H increasing at the rate Bu. Then the E and H 
waves are mutually dependent: 

Du � "&0Eu � H �1:5�(
Bu � �0Hu � E �1:6�(

Multiplication and division of (1.5) and (1.6) give 

u � 1=
p�"&0�0 � � c ' 3 � 108 m=s 

E=H � p��0 ="&0� � Z0 ' 377 
 

The velocity of propagation in free space is thus fixed; the 
ratio E/H is also fixed, and is called the intrinsic impedance. 

1Further, 1 "&0E
2=2 �0H

2 [J/m3], showing that the electric 2 
and magnetic energy densities are equal. 
Propagation is normally maintained by charge accelera-

tion which results from a high-frequency alternating current 
(e.g. in an aerial), so that waves of E and H of sinusoidal 
distribution are propagated with a wavelength dependent 
on the frequency (Figure 1.11). There is a fixed relation 
between the directions of E, H and the energy flow. The 
rate at which energy passes a fixed point is EH[W/m2], and 
the direction of E is taken as that of the wave polarisation. 
Plane wave transmission in a perfect homogeneous loss-

free insulator takes place as in free space, except that "&0 is 
replaced by "&� "&r "&0, where "&r is the relative permittivity of 
the medium: the result is that both the propagation velocity 
and the intrinsic impedance are reduced. 
When a plane wave from free space enters a material with 

conducting properties, it is subject to attenuation by reason 
of the I2R loss. In the limit, a perfect conductor presents to 
the incident wave a complete barrier, reflecting the wave as 
a perfect mirror. A wave incident upon a general medium is 
partly reflected, and partly transmitted with attenuation 
and phase-change. 
Table 1.24 gives the wavelength and frequency of free 

space electromagnetic waves with an indication of their 
technological range and of the physical origin concerned. 

Figure 1.11 Electromagnetic wave 
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1/32 Units, mathematics and physical quantities 

Table 1.24 Electromagnetic wave spectrum 

Free space properties: 

Electric constant 
Magnetic constant 

"&0 �( 8.854�10�12 

�0 �( 4��10�7 
F/m 
H/m 

Intrinsic impedance 
Velocity 

Z0 �( 376.8 
c �( 2.9979�108 


 
m/s 

The product of wavelength �& [m] and frequency f [Hz] is f�&�( c ^ 3�108 [m/s]. 

�& f Range Origin 




