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Laplace transforms and the transfer function 13/3 

13.1 Introduction 

Examples of the conscious application of feedback control 
ideas have appeared in technology since very early times: 
certainly the float-regulator schemes of ancient Greece were 
notable examples of such ideas. Much later came the auto-
matic direction-setting of windmills, the Watt governor, its 
derivatives, and so forth. The first third of the 1900s wit-
nessed applications in areas such as automatic ship steering 
and process control in the chemical industry. Some of these 
later applications attracted considerable analytical effort 
aimed at attempting to account for the seemingly capricous 
dynamic behaviour that was sometimes found in practice. 

However, it was not until during, and immediately after, 
World War II that the fundamentals of the above somewhat 
disjointed control studies were subsumed into a coherent 
body of knowledge which became recognised as a new engin-
eering discipline. The great thrust in achieving this had its 
main antecedents in work done in the engineering electron-
ics industry in the 1930s. Great theoretical strides were 
made and the concept of feedback was, for the first time, 
recognised as being all pervasive. The practical and theoret-
ical developments emanating from this activity, constitute 
the classical approach to control which are explored in 
some detail in this chapter. 

Since the late 1940s, tremendous efforts have been made to 
expand the boundaries of control engineering theory. For 
example, ideas from classical mechanics and the calculus of 
variations have been adapted and extended from a control-
theoretic viewpoint. This work is based largely on the state-
space description of systems (this description is briefly 
described in Section 13.11). However, it must be admitted 
that the practical uses and advantages of many of these 
developments have yet to be demonstrated. Most control 
system design work is still based on the classical work men-
tioned previously. Moreover, nowadays these applications 
rely, very heavily, on the use of computer techniques; indeed, 
computers are commonly used as elements in control loops. 

Techniques from the `classical' period of control engin-
eering development is easily understood, wide-ranging in 
application and, perhaps most importantly, capable of cop-
ing with deficiencies in detailed knowledge about the system 
to be controlled. 

These techniques are easily adapted for use in the com-
puter-aided design of control systems, and have proved 
themselves capable of extension into the difficult area of  
multi-variable system control; however, this latter topic is 
beyond the scope of this chapter. So with the above com-
ments in mind, a conventional basic approach to control theory 
is presented, with a short discussion of the state-space 
approach and a more extensive forage into sampled-data 
systems. These latter systems have become important owing 
to the incorporation of digital computers, particularly micro-
computers, into the control loop. Fortunately, an elementary 
theory for sampled data can be established which nicely par-
allels the development of basic continuous control theory. 

The topics covered in this introduction, and extensions 
of them, have stood practitioners in good stead for several 
decades now, and can be confidently expected to go on 
delivering good service for some decades to come. 

13.2 Laplace transforms and the transfer 
function 

In most engineering analysis it is usual to produce mathemat-
ical models (of varying precision) to predict the behaviour of  

physical systems. Often such models are manifested by a dif-
ferential equation description. This appears to fit in with the 
causal behaviour of idealised components, e.g. Newton's law 
relating the second derivative of displacement to the applied 
force. It is possible to model such behaviour in other ways 
(for example, using integral equations), although these are 
much less familiar to most engineers. All real systems are 
non-linear; however, it is fortuitous that most systems behave 
approximately like linear ones, with the implication that 
superposition holds true to some extent. We further restrict 
the coverage here in that we shall be concerned particularly 
with systems whose component values are not functions of 
timeÐat least over the time-scale of interest to us. 

In mathematical terms this latter point implies that the 
resulting differential equations are not only linear, but also 
have constant coefficients, e.g. many systems behave approxi-
mately according to the equation 

d2 x dx � 2�!n � !2 x �( !2 f �t� �13:1�ndt2 dt n


where x is the dependent variable (displacement, voltage,

etc.), f(t) is a forcing function (force, voltage source, etc.),

and !2 and �& are constants the values of which depend on
n 
the size and interconnections of the individual physical 
components making up the system (spring-stiffness con-
stant, inductance values, etc.). 

Equations having the form of Equation (13.1) are called 
`linear constant coefficient ordinary differential equations' 
(LCCDE) and may, of course, be of any order. There are 
several techniques available for solving such equations but 
the one of particular interest here is the method based on 
the Laplace transformation. This is treated in detail else-
where, but it is useful to outline the specific properties of 
particular interest here. 

13.2.1 Laplace transformation 

Given a function f(t), then its Laplace transformation F(s) 
is defined as �1(
L� f �t�� �( F�s� � ( f �t� exp��st�dt 

0 

where, in general, s is a complex variable and of such a 
magnitude that the above integral converges to a definite 
functional value. 

A list of Laplace transformation pairs is given in Table 13.1. 
The essential usefulness of the Laplace transformation 

technique in control engineering studies is that it transforms 
LCCDE and integral equations into algebraic ones and, 
hence, makes for easier and standard manipulation. 

13.2.2 The transfer function 

This is a central notion in control work and is, by definition, 
the Laplace transformation of the output of a system 
divided by the Laplace transformation of the input, with 
the tacit assumption that all initial conditions are at zero. 

Thus, in Figure 13.1, where y(t) is the output of the 
system and u(t) is the input, then the transfer function G(s) is  

L�y�t��=L�u�t�� � Y �s�=U�s� � (G�s�(
Supposing that y(t) and u(t) are related by the general 

LCCDE 

dny dn�1y � � � � (� a0yan 
dtn 
� an�1

dtn�1 
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Table 13.1 Laplace transforms and z transforms 

f(t) F(s) F(z) 

0 0 0 
f(t � nT) exp(�nsT )F(s) z �nF(z) 
�(t) 1 1 
�(t � nT) exp(�nsT ) z � n 

1(P 
�(t �( nT )  [1  � exp(�st)]�1 z(z � 1)�1 

n�0 
h(t) s �1 z(z � 1)�1 

uT (t) 
A 

[1 � exp(�sT)]s �1 

As  �1 
Ð 
Az(z � 1)�1 

t s �2 Tz(z � 1)�2 

f(t)t �dF(s)/ds Ð 

(t � nT)h(t � nT) exp(�nsT )s �2 Tz� (n � 1)(z � 1)�2 

t2 2s �3 T 2 z(z � 1)(z � 1)�3 

tn 
exp(�t) 

n!s �(n � 1) 

(s ��)�1 
Ð 
z(z � exp(�T ))�1 

f(t)exp(�t) F(s ��) F [zexp(��T )] 

�(t) ��& exp(�t) s(s ��)�1 Ð 

t exp(�t) (s ��)�2 TZ exp(�T )[z � exp(�T )]�2 

tn exp(�t) n!(s ��)�(n � 1) Ð 
!& z sin !T 

sin !t 
s2 �( !2 z2 �( 2z cos !T �( 1 

cos !t 
s 

s2 �( !2 

z(z �( cos !T ) 
z2 �( 2z cos !T �( 1 

t s 
2!&

sin !t 
(s2 �( !2) 

Ð 

1 !2 

2!
( sin !t �( !t cos !t) 

(s2 �( !2)2 Ð 

1 A � !� 
cos �&

sin (!t �( �) 
s2 �( !2 

s �(
A 

where tan �& �( A Ð 

1 1 
cos �&

cos (!t �( �) 
s2 �( !2 

(s �( A!) Ð 

exp(�t) sin !t 
!&

(s �( �)2 �( !2 
�( !&

(s �( �&�( j!)(s �( �&�( j!) 
z exp (�T ) sin !T 

z2 �( 2z exp (�T ) cos !T �( exp (2�T) 

exp(�t) cos !t 
s �( �&

(s �( �)2 �( !2 

z�z �( exp (�T ) cos !T �(
z2 �( 2z exp (�T ) cos !T �( exp (2�T) 

t s �( �&
2!

exp (�t) sin !t �(s �( �)2 �( !2 �2 Ð 

1 !2 

2!
exp (�t)( sin !t �( cos !t) �(s �( �)2 �( !2 �2 Ð 

1 A � !� 
cos �&

exp (�t) sin (!t �( �) 
(s �( �)2 �( !2 

s �( �&�(
A 

where tan �& �( A Ð 

1 1 
cos �&

exp (�t) cos (!t �( �) 
(s �( �)2 �( !2 

(s �( �&�( A!) Ð 

sinh !t !(s 2 �!2)�1 Ð 

cosh !t s(s 2 �!2)�1 Ð 

cont'd 
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Table 13.1 (continued) 

f 0(t) sF(s)�f(0�) Ð 

f 0 0(t) s 2F(s)�sf(0�)�f 0(0�) Ð 

f n(t) s nF(s) � s n � 1f(0�)�s n � 2f 0(0�) .  .  .  � f n � 1(0�) Ð 

f �1(t) 
F (s) �( f 

�1(0�) 
Ð 

s s 
f (t) sF(s) F(z) 

t ! 0 s !1 ( z !1 (
f (t) sF (s) (z � 1)z�1F (z) 

t !1 ( s ! 0 z ! 1 

�(t), The unit impulse function.

h(t), The unit step function.

uT(t), The unit step function followed by a unit negative step at t=T, where T is the sampling period.


Figure 13.1 Input±output representation 

dm u dm�1u � � � � � b0u �13:2�� bm 
dtm 
� bm�1

dtm�1 

then, on Laplace transforming and ignoring initial con-
ditions, we have (see later for properties of Laplace 
transformation) 

�ansn � an�1sn�1 � � � � � a0�Y�s�(
� �bmsm � bm�1sm�1 � � � � � b0�U�s�(

whence X .XY �s�( m n 

bis
i i� G�s� � ( ais 

U�s�(
i�0 i�0 

There are a number of features to note about G(s). 

(1)	 Invariably n >& m for physical systems. 
(2)	 It is a ratio of two polynomials which may be written 

bm�s � z1� . . .  �s � zm�(
G�s� � (

an�s � p1� . . .  �s � pn�(
z1,  . . .  ,  zm are called the zeros and p1, .  . .  ,  pn are called 
the poles of the transfer function. 

(3)	 It is not an explicit function of input or output, but 
depends entirely upon the nature of the system. 

(4)	 The block diagram representation shown in Figure 13.1 
may be extended so that the interaction of com-
posite systems can be studied (provided that they do 
not load each other); see below. 

(5)	 If u(t) is a delta function �(t), then U(s) � 1, whence 
Y(s) �G(s) and y(t) � g(t), where g(t) is the impulse 
response (or weighting function) of the system. 

(6)	 Although a particular system produces a particular 
transfer function, a particular transfer function does 
not imply a particular system, i.e. the transfer function 
specifies merely the input±output relationship between 
two variables and, in general, this relationship may be 
realised in an infinite number of ways. 

(7)	 Although we might expect that all transfer functions will 
be ratios of finite polynomials, an important and 

common element which is an exception to this is the 
pure-delay element. An example of this is a loss-free 
transmission line in which any disturbance to the input 
of the line will appear at the output of the line without 
distortion, a finite time (say �) later. Thus, if u(t) is  the  
input, then the output y(t) � u(t � �) and the transfer 
function Y(s)/U(s) � exp(�s�). Hence, the occurrence 
of this term within a transfer function expression implies 
the presence of a pure delay; such terms are common in 
chemical plant and other fluid-flow processes. 

Having performed any manipulations in the Laplace 
transformation domain, it is necessary for us to transform 
back to the time domain if the time behaviour is required. 
Since we are dealing normally with the ratio of polynomials, 
then by partial fraction techniques we can arrange Y(s) to  
be written in the following sequences: 

K�s � z1 ��s � z2� . .  .  �s � zm �(
Y �s� � ( �s � p1��s � p2� . .  .  �s � pn�(

Y �s� � K 
A1 

� 
�( A2 � � � � � ( An 

� 
s � p1 s � p2 s � pn 

and by so arranging Y(s) in this form the conversion to y(t) can  
be made by looking up these elemental forms in Table 13.1. 

Example Suppose that 

5�s2 � 4s � 3�( 5�s2 � 4s � 3�(
Y �s� � ( �(

s3 � 6s2 � 8s s�s � 2��s � 4�(�	 � 
3 1 3 � 5 � �(
8s 4�s � 2�( 8�s � 4�(

Then �	 � 
5 3 

y�t� � ( f1 � exp��4t�g � exp��2t�(
4 2 

13.2.3 Certain theorems 

A number of useful transform theorems are quoted below, 
without proof. 

(1) Differentiation 
If F(s) is the Laplace transformation of f (t), then 

n�1f �L�dnf �t�=dtn� � snF�s� � s 0� � sn�2f 0�0� � � � � � f n�1 �0�(
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For example, if f(t) � exp(�bt), then � � 
d3 3s

L 
dt3 

exp��bt� �( � s 2 � bs � b2 

s � b 

(2) Integration 
If L[ f(t)] �F(s), then � �1 � 

F �s�(
L f �t�dt � � f �0�(

0 s 

Repeated integration follows in a similar fashion. 

(3) Final-value theorem 
If f (t) and f 0(t) are Laplace transformable and if 
L[ f(t)] �F(s), then if the limit of f(t) exists as t goes towards 
infinity, then 

lim sF �s� � ( lim f �t�(
s!0 t!1(

For example, 

b � a 
F �s� � (

s�s � a��s � b�(
then 

s�b � a�( b � a 
lim � �( lim f �t�(
s!0 s�s � a��s � b�( ab t!1(

(4) Initial-value theorem 
If f (t) and f 0(t) are Laplace transformable and if 
L[f(t)] �F(s), 
then 

lim sF�s� � lim f �t�(
s!1( t!0 

(5) Convolution 
If L[ f1(t)] �F1(s) and L[ f2(t)] �F2(s), then ��1( � 
F1�s� � F2�s� � L f1�t � �� � f2���d�&

0 

13.3 Block diagrams 

It is conventional to represent individual transfer functions 
by boxes with an input and output (see note (4) in Section 
13.2.2). Provided that the components represented by the 
transfer function do not load those represented by the trans-
fer function in a connecting box, then simple manipulation 
of the transfer functions can be carried out. For example, 
suppose that there are two transfer functions in cascade 
(see Figure 13.2): then we may write X(s)/U(s) �G1(s) and 
Y(s)/X(s) �G2(s). Eliminating X(s) by multiplication, we have 

Y �s�=U�s� � G1 �s�G2�s�(
which may be represented by a single block. This can 
obviously be generalised to any number of blocks in 
cascade. 

Another important example of block representation is 
the prototype feedback arrangement shown in Figure 13.3. 
We see that Y(s) �G(s)E(s) and E(s) �U(s) �H(s)Y(s). 
Eliminating E(s) from these two equations results in 

Figure 13.2 Systems in cascade 

Figure 13.3 Block diagram of a prototype feedback system 

Figure 13.4 Reduction of the diagram shown in Figure 13.3 to a 
single block 

Y�s�( G�s�(�( �W �s�(
U�s�( 1 �H�s�G�s�(
In block diagram form we have Figure 13.4. If we eliminate 
Y(s) from the above equations, we obtain 

E�s�( 1 �(
U�s�( 1 � �H�s�G�s�(

13.4 Feedback 

The last example is the basic feedback conceptual arrange-
ment, and it is pertinent to investigate it further, as much 
effort in dealing with control systems is devoted to design-
ing such feedback loops. The term `feedback' is used 
to describe situations in which a portion of the output 
(and/or processed parts of it) are fed back to the input of  
the system. The appropriate application may be used, for 
example, to improve bandwidth, improve stability, improve 
accuracy, reduce effects of unwanted disturbances, compen-
sate for uncertainty and reduce the sensitivity of the system 
to component value variation. 

As a concrete example consider the system shown in 
Figure 13.5, which displays the arrangements for an angular 
position control system in which a desired position �r is 
indicated by tapping a voltage on a potentiometer. The 
actual position of the load being driven by the motor 
(usually via a gearbox) is monitored by �o, indicated, again 
electrically, by a potentiometer tapping. If we assume 
identical potentiometers energised from the same voltage 
supply, then the misalignment between the desired output 
and the actual output is indicated by the difference between 
the respective potentiometer voltages. This difference (propor-
tional to error) is fed to an amplifier whose output, in turn, 
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Figure 13.5 Schematic diagram of a simple position and control 
system 

drives the motor. Thus, the arrangement seeks to drive the 
system until the output �o and input �r are coincident 
(i.e. the error is zero). 

In the more general block diagram form, the above 
schematic will be transformed to that shown in Figure 13.6, 
where �r(s), �o(s) are the Laplace transforms of the input, 
output position: K1(s) and K2(s) are the potentiometer 
transfer functions (normally taken as straight gains); Vr(s) 
is the Laplace transform of the reference voltage; Vo(s) is  
the Laplace transform of the output voltage; Gm(s) is the 
motor transfer function; G1(s) is the load transfer function; 
and A(s) is the amplifier transfer function. 

Let us refer now to Figure 13.3 in which U(s) is identified 
as the transformed input (reference or demand) signal, Y(s) 
is the output signal and E(s) is the error (or actuating) 
signal. G(s) represents the forward transfer function and is 
the product of all the transfer functions in the forward 
loop, i.e. G(s) �(A(s)Gm(s)G1(s) in the above example. 

H(s) represents the feedback transfer function and is the 
product of all transfer functions in the feedback part of the 
loop. 

We saw in Section 13.3 that we may write 

Y �s�( G�s�(�(
U�s�( 1 �(H�s�G�s�(
and 

E�s�( 1 �(
U�s�( 1 �(H�s�G�s�(
i.e. we have related output to input and the error to the 
input. 

Generally desirable and acceptable behaviour 13/7 

The product H(s)G(s) is called the open-loop transfer func-
tion and G(s)/[1 �H(s)G(s)] the closed-loop transfer function. 
The open-loop transfer function is most useful in studying 
the behaviour of the system, since it relates the error to the 
demand. Obviously it would seem desirable for this error to 
be zero at all times, but since we are normally considering 
systems containing energy storage components, total elim-
ination of error at all times is impossible. 

13.5 Generally desirable and acceptable 
behaviour 

Although specific requirements will normally be drawn up 
for a particular control system, there are important general 
requirements applicable to the majority of systems. Usually 
an engineering system will be assembled from readily avail-
able components to perform some function, and the choice of 
these components will be restricted. An example of this 
would be a diesel engine±alternator set for delivering electrical 
power, in which normally the most convenient diesel 
engine±alternator combination will be chosen from those 
already manufactured. 

Even if such a system were assembled from customer-
designed components, it would be fortuitous if it performed 
in a satisfactory self-regulatory way without further consid-
eration of its control dynamics. Hence, it is the control 
engineer's task to take such a system and devise economical 
ways of making the overall system behave in a satisfactory 
manner under the expected operational conditions. 

For example, a system may oscillate, i.e. it is unstable; 
or, although stable, it might tend to settle after a change in 
input demand to a value unacceptably far from this new 
demand, i.e. it lacks static accuracy. Again, it might settle 
to a satisfactory new steady state, but only after an unsatisfac-
tory transient response. Alternatively, normal operational 
load disturbances on the system may cause unacceptably 
wide variation of the output variable, e.g. voltage and 
frequency of the engine±alternator system. 

All these factors will normally be quantified in an actual 
design specification, and fortunately a range of techniques is 
available for improving the behaviour. But the application of 
a particular technique to improve the performance of one 
aspect of behaviour often has a deleterious effect on another, 
e.g. improved stability with improved static accuracy tends to 
be incompatible. Thus, a compromise is sought which gives 
the `best' acceptable all-round performance. We now discuss 

Figure 13.6 Block diagram of the system shown in Figure 13.5 
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some of these concepts and introduce certain techniques 
useful in examining and designing systems. 

13.6 Stability 

This is a fairly easy concept to appreciate for the types 
of system under consideration here. Equation (13.2) with 
the right-hand side made equal to zero governs the free 
(or unforced, or characteristic) behaviour of the system, 
and because of the nature of the governing LCCDE it is 
well known that the solution will be a linear combination 
of exponential terms, viz. 

n 

y�t� � ( Ai exp��it�(
i�1 

X 
where the �i values are the roots of the so-called `character-
istic equation'. 

It will be noted that should any �i have a positive real 
part (in general, the roots will be complex), then any disturb-
ance will grow in time. Thus, for stability, no roots must 
lie in the right-hand half of the complex plane or s plane. 
In a transfer function context this obviously translates to 
`the roots of the denominator must not lie in the right-hand 
half of the complex plane'. 

For example, if W(s) �G(s)/[1 �H(s)G(s)], then the roots 
referred to are those of the equation 

1 �H�s�G�s� � 0 

In general, the determination of these roots is a non-trivial 
task and, as at this stage we are interested only in whether 
the system is stable or not, we can use certain results from 
the theory of polynomials to achieve this without the necessity 
for evaluating the roots. 

A preliminary examination of the location of the roots may 
be made using the Descartes rule of signs, which states: if f(x) 
is a polynomial, the number of positive roots of the equation 
f(x) � 0 cannot exceed the number of changes of sign of the 
numerical coefficients of f(x), and the number of negative 
roots cannot exceed the number of changes of sign of the 
numerical coefficients of f(�x). `A change of sign' occurs 
when a term with a positive coefficient is immediately fol-
lowed by one with a negative coefficient, and vice versa. 

Example Suppose that f(x) � x 3 � 3x � 2 � 0; then there can 
be at most one positive root. Since f(�x) ��x 3 � 3x � 2, 
the equation has no negative roots. Further, the equation is 
cubic and must have at least one real root (complex roots 
occur in conjugate pairs); therefore the equation has one 
positive-real root. 

Although Descartes' result is easily applied, it is often 
indefinite in establishing whether or not there is stability, 
and a more discriminating test is that due to Routh, which 
we give without proof. 

Suppose that we have the polynomial 

a0sn � a1sn�1 . .  .  an�1s � an � 0 

where all coefficients are positive, which is a necessary (but 
not sufficient) condition for the system to be stable, and we 
construct the following so-called `Routh array': 

ns : a0 a2 a4 a6 . .  .  
sn�1 : a1 a3 a5 a7 . .  .  
sn�2 : b1 b2 b3 . . .  
sn�3 : c1 c2 c3 . . .  
sn�4 : d1 d2 . .  .  

where 
a1a2 � a0a3 a1a4 � a0a5 a1a6 � a0a7

b1 �( ;& b2 �( ;& b3 �( ; . .  .  
a1 a1 a1 

b1a3 � a1b2 b1a5 � a1b3

c1 �( ;& c2 �( ; . .  . %

b1 b1 

c1b2 � b1c2
d1 �( ; . .  .  

c1 

This array will have n � 1 rows. 
If the array is complete and none of the elements in the 

first column vanishes, then a sufficient condition for the 
system to be stable (i.e. the characteristic equation has all 
its roots with negative-real parts) is for all these elements to 
be positive. Further, if these elements are not all positive, 
then the number of changes of sign in this first column indi-
cates the number of roots with positive-real parts. 

3Example Determine whether the polynomial s 4 � 2s � 6s 2 

� 7s � 4 � 0 has any roots with positive-real parts. Construct 
the Routh array: 

4s : 1	 6 4 
3s : 2	 7 

�2��6� � �1��7� �2��4� � �1��0�2s : � 2:5 � 4 
2 2


�2:5��7� � �2��4�

s :! � 3:8 

2:5 
0s : 4 

There are five rows with the first-column elements all 
positive, and so a system with this polynomial as its char-
acteristic would be stable. 

There are cases that arise which need a more delicate 
treatment. 

(1) Zeros occur in the first column, while other elements 
in the row containing a zero in the first column are 
non-zero. 

In this case the zero is replaced by a small positive 
number, ", which is allowed to approach zero once the 
array is complete. 

For example, consider the polynomial equation 
s 5 � 2s 4 � 2s 3 � 4s 2 � 11s � 8 � 0: 

5s : 1  2 11  
4s : 2 4 8 
3s : "& 5 0 
2s	 : �1 8

1
s	 : �2 0

0
s : 8 

where 

4"&� 10 10 5�1 � 8"&
�1 �(

"&
' � ( and �2 � '( 5 

" �1 

Thus, �1 is a large negative number and we see that 
there are effectively two changes of sign and, hence, the 
equation has two roots which lie in the right-hand half 
of this plane. 

(2) Zeros occur in the first column and other elements of 
the row containing the zero are also zero. 

This situation occurs when the polynomial has roots 
that are symmetrically located about the origin of the s 
plane, i.e. it contains terms such as (s � j!)(s � j!) or  
(s � v)(s � v). 

This difficulty is overcome by making use of the 
auxiliary equation which occurs in the row immediately 
before the zero entry in the array. Instead of the 
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all-zero row the equation formed from the preceding 
row is differentiated and the resulting coefficients are 
used in place of the all-zero row. 

3For example, consider the polynomial s � 3s 2 �(
2s � 6 � 0. 
3s : 1 2  
2s : 3 6  �auxiliary equation 3s2 � 6 � 0�(
1s : 0 0  

Differentiate the auxiliary equation giving 6s � 0, and 
compile a new array using the coefficients from this 
last equation, viz. 
3s : 1 2  
2s : 3 6  
1s : 6 0  
0s : 1 

Since there are no changes of sign, the system will not 
have roots in the right-hand half of the s plane. 

Although the Routh method allows a straightforward 
algorithmic approach to determining the stability, it gives 
very little clue as to what might be done if stability condi-
tions are unsatisfactory. This consideration is taken up 
later. 

13.7 Classification of system and static 
accuracy 

13.7.1 Classification 

The discussion in this section is restricted to unity-feedback 
systems (i.e. H(s) � 1) without seriously affecting general-
ities. We know that the open-loop system has a transfer 
function KG(s), where K is a constant and we may write 

m 

bks k 
X 

K 

KG�s� � (K�s � z1��s � z2� . . .  �s � zm� �( k�0 

s1 �s � p1��s � p2 � . .  .  �s � p3�( X n�1 
1 k s aks 

k�0 

and for physical systems n � m � 1. 
The order of the system is defined as the degree of the 

polynomial in s appearing in the denominator, i.e. n. 
The rank of the system is defined as the difference in the 

degree of the denominator polynomial and the degree of the 
numerator polynomial, i.e. n �m � 1. 

The class (or type) is the degree of the s term appearing in 
the denominator (i.e. l), and is equal to the number of 
integrators in the system. 

Example 

s � 1 
(1) G�s� � (

s4 � 6s3 � 9s2 � 3s 

implies order 4, rank 3 and type 1. 

s2 � 4s � 1 
(2) G�s� � (�s � 1��s2 � 2s � 4�(

implies order 3, rank 1 and type 0. 

13.7.2 Static accuracy 

When a demand has been made on the system, then it is 
generally desirable that after the transient conditions have 

Classification of system and static accuracy 13/9 

decayed the output should be equal to the input. Whether 
or not this is so will depend both on the characteristics of 
the system and on the input demand. Any difference between 
the input and output will be indicated by the error term e(t) 
and we know that for the system under consideration 

U�s�(
E�s� � (

1 � KG�s�(
Let ess � limt !1 ( e(t) (if it exists), and so ess will be the 
steady-state error. Now from the final-value theorem we have 

ess �( lim e�t� � lim�sE�s��(
t!1( s!0 

Thus, � � 
sU�s�(

ess � lim 
s!0 1 � KG�s�(

13.7.2.1 Position-error coefficient Kp 

Suppose that the input is a unit step, i.e. R(s) � 1/s; then � 
1 

� 
1 1 �( �ess � lim 

s!0 1 � KG�s�( 1 � lims!0�KG�s��( 1 � Kp 

where Kp �( lims!0[KG(s)] and this is called the position-
error coefficient. 

Example For a type-0 system "  #," # 
m n 

bksk k 
X X 

KG�s� � ( K aks 
k�0 k�0 

Therefore Kp �K(b0/a0) and ess � 1/(1 �Kp). 

It will be noted that, after the application of a step, there 
will always be a finite steady-state error between the input 
and the output, but this will decrease as the gain K of the 
system is increased. 

Example For a type-1 system "  #," # 
m n�1 

bksk k 
X X 

KG�s� � ( K s aks 
k�0 k�0 

and "  #," # 
m n�1 

bksk k 
X X 

Kp � lim K s aks !1 (
s!0 

k�0 k�0 

Thus, 

1 
ess � ! 0 

1 �1 (
i.e. there is no steady-state error in this case and we see that 
this is due to the presence of the integrator term 1/s. This is 
an important practical result, since it implies that steady-
state errors can be eliminated by use of integral terms. 

13.7.2.2 Velocity-error coefficient, Kv 

Let us suppose that the input demand is a unit ramp, i.e. 
u(t) � t, so  U(s) � 1/s 2. Then � � 

1 1 
ess � lim�sE�s�� � lim �(

s!0 s!0 s � sKG�s�( lims!0�sKG�s��(
1 �(

Kv 
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where Kv � lims!0[sKG(s)] is called the velocity-error 
coefficient. 

Examples For a type-0 system Kv � 0, whence ess !1. 
For a type-1 system Kv �K(b0/a0) and so this system can 

follow but with a finite error. 
For a type-2 system � � 

K b0
Kv � lim !1 (

s!0 s a0 

whence ess ! 0 and so the system can follow in the steady 
state without error. 

13.7.2.3	 Acceleration-error coefficient Ka 

3In this case we assume that u(t) � t2/2, so U(s) � 1/s and so � � 
1 

ess � lim�sE�s�� � lim 
s!0 s!0 s2 � s2KG�s�(

1 1 � �(
lims!0�s2KG�s��( Ka 

where Ka � lims!0[s 2 KG(s)] is called the acceleration-error 
coefficient and similar analyses to the above may be 
performed. 

These error-coefficient terms are often used in design 
specifications of equipment and indicate the minimum 
order of the system that one must aim to design. 

13.7.3 Steady-state errors due to disturbances 

The prototype unity-feedback closed-loop system is shown in 
Figure 13.7 modified by the intrusion of a disturbance D(s) 

Figure 13.7 Schematic diagram of a disturbance entering the loop 

being allowed to affect the loop. For example, the loop might 
represent a speed-control system and D(s) might represent 
the effect of changing the load. Now, since linear systems 
are under discussion, in order to evaluate the effects of this 
disturbance on Y(s) (denoted by YD(s)), we may tacitly 
assume U(s) � 0 (i.e. invoke the superposition principle) 

YD�s� � D�s� � KG�s�YD�s�(
YD�s� � D�s�=�1 � KG�s��(
Now ED(s) ��YD(s) ��D(s)/[1 �KG(s)], and so the 
steady-state error, essD due to the application of the disturb-
ance, may be evaluated by use of the final-value theorem as � 

sD�s�( � 
essD � � lim 

1 � KG�s�s!0 

Obviously the disturbance may enter the loop at other 
places but its effect may be established by similar analysis. 

13.8 Transient behaviour 

Having developed a means of assessing stability and 
steady-state behaviour, we turn our attention to the transient 
behaviour of the system. 

13.8.1 First-order system 

It is instructive to examine first the behaviour of a first-
order system (a first-order lag with a time constant T ) to a  
unit-step input (Figure 13.8). 

Now 

Y�s�( 1 � G�s� � (
U�s�( 1 � sT 

Figure 13.8 First-order lag response to a unit step (time constant � 1, 2, 3, units) 
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Figure 13.9 First-order lag incorporated in a feedback loop 

where U(s) �( 1/s 

1 1 1 
Y�s� � �( � �(

s�1 � sT �( Ts�s � �1=T��( s �s � �1=T ��(
or y(t) �( 1 � exp(�t/T );

note also that dy/dt �( (1/T) exp(�t/T ).


Figure 13.8 shows this time response for different values 
of T where it will be noted that the corresponding trajec-
tories have slopes of 1/T at time t �( 0 and reach approxi-
mately 63% of their final values after T. 

Suppose now that such a system is included in a unity-
feedback arrangement together with an amplifier of gain K 
(Figure 13.9); therefore 

Y �s�( K=�1 � sT�( K � �( � � 
U�s�( 1 � K=�1 � sT �( T �1 � K�( 1 � s 

1 � K 

For a unit-step input the time response will be 

K 
y�t� � ( �1 � expf��1 � K��t=T �g�

1 � K 

This expression has the same form as that obtained for the 
open loop but the effective time constant is modified by the 
gain and so is the steady-state condition (Figure 13.10). 
Such an arrangement provides the ability to control the 
effective time constant by altering the gain of an amplifier, 
the original physical system being left unchanged. 

13.8.2 Second-order system 

The behaviour characteristics of second-order systems are 
probably the most important of all, since many systems of  
seemingly greater complexity may often be approximated by a 
second-order system because certain poles of their transfer 
function dominate the observed behaviour. This has led to 

system specifications often being expressed in terms of 
second-order system behavioural characteristics. 

In Section 13.2 the importance of the second-order behav-
iour of a generator was mentioned, and this subject is 
now taken further by considering the system shown in 
Figure 13.11. 

The closed-loop transfer function for this system is given by 

KG�s�( K 
W �s� � ( �(

1 � KG�s�( s2 � as � K 

and this may be rewritten in general second-order terms in 
the form 

!2 

W �s� � ( n 

s2 � 2�!ns � !2 
n 

where K �(!2 and �&�( a/(2 HK). The unit-step response is n 
given by 

y�t� � (1 � exp���!nt��cos�!nt� � ��=� sin�!nt��(
where &�(H(1 � �&2). This assumes, of course, that � < &1, so 
giving an oscillating response decaying with time. 

The rise time tr will be defined as the time to reach the 
first overshoot (note that other definitions are used and it 
is important to establish which particular definition is being 
used in a particular specification): 

tr �( �=�!n� � (�=p�K � �a=2�2�(
i.e. the rise time decreases as the gain K is increased. 

The percentage overshoot is defined as: 

Percentage 100�Max:& value ofy�t�� (Steady-state value�(�(
overshoot Steady-state value 

�( 100 exp����=&� � (100 exp����=p�4K � a 2 ��(
i.e. the percentage overshoot increases as the gain K 
increases. 

Figure 13.10 Response of first-order lag: (a) open-loop condition (T �( 1); (b) closed-loop condition (T �( 1, K �(2) 
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Figure 13.11 Second-order system 

The frequency of oscillation !r is immediately seen to be 

!r � !n& � p�K � �a=2�2�(
i.e. the frequency of oscillation increases as the gain K 
increases. 

The predominant time constant is the time constant asso-
ciated with the envelope of the response (Figure 13.12) 
which is given by exp(��!nt) and thus the predominant 
time constant is 1/�!n: 

1 2 �(
�!n �a=2pK�pK 

�(
a 

Note that this time constant is unaffected by the gain K and 
is associated with the `plant parameter a', which will 
normally be unalterable, and so other means must be 
found to alter the predominant time constant should this 
prove necessary. 

The settling time ts is variously defined as the time taken 
for the system to reach 2±5% (depending on specification) 
of its final steady state and is approximately equal to four 
times the predominant time constant. 

Figure 13.12 Step response of the system shown in Figure 13.11. The  
rise time tr is the time taken to reach maximum overshoot. The predo-
minant time constant is indicated by the tangents to the envelope curve 

It should be obvious from the above that characteristics 
desired in plant dynamical behaviour may be conflicting 
(e.g. fast rise time with small overshoot) and it is up to the 
skill of the designer to achieve the best compromise. 
Overspecification can be expensive. 

A number of the above items can be directly affected by 
the gain K and it may be that a suitable gain setting can be 
found to satisfy the design with no further attention. 
Unfortunately, the design is unlikely to be as simple as 
this, in view of the fact that the predominant time constant 
cannot be influenced by K. A particularly important 
method for influencing this term is the incorporation of 
so-called velocity feedback. 

13.8.3 Velocity feedback 

Given the prototype system shown in Figure 13.11, suppose 
that this is augmented by measuring the output y(t), differ-
entiating to form v_�t�, and feeding back in parallel with the 
normal feedback a signal proportional to y_�t�: say Ty_�t�. 
The schematic of this arrangement is shown in Figure 13.13. 
Then, by simple manipulation, the modified transfer function 
becomes 

W 0(
K �s� � (

s2 � �a � KT �s � K 

whence the modified predominant time constant is given by 
2/(a �TK). The designer effectively has another string to his 
bow in that manipulation of K and T is normally very much 
in his command. 

A similar effect may be obtained by the incorporation of 
a derivative term to act on the error signal (Figure 13.14) 
and in this case the transfer function becomes 

W 0(
K�1 � Ts�(�s� � (

s2 � �a � KT �s � K 

It may be demonstrated that this derivative term when 
correctly adjusted can both stabilise the system and increase 
the speed of response. The control shown in Figure 13.14 is 
referred to as proportional-plus-derivative control and is very 
important. 

13.8.4 Incorporation of integral control 

Mention has previously been made of the effect of using 
integrators within the loop to reduce steady-state errors; a 
particular study with reference to input/output effects was 
given. In this section consideration is given to the effects of 
disturbances injected into the loop, and we consider again 

Figure 13.13 Schematic diagram showing the incorporation of velocity feedback 
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Figure 13.14 Schematic diagram of the proportional-plus-derivative control system 

the simple second-order system shown in Figure 13.11 but 
with a disturbance occurring between the amplifier and the 
plant dynamics. Appealing to superposition we can, with-
out loss of generality, put U(s) � 0 and the transfer function 
between the output and the disturbance is then given by 

Y�s�( 1 �(
D�s�( s�s � a� � K 

Assuming that d(t) is a unit step, D(s) � 1/s, and using the 
final-value theorem, limt!1y(t) is obtained from � � 

s 1 
lim y�t� � ( lim �(
t!1 s!1( �s�s � a� � K �s K 

and so the effect of this disturbance will always be present. 
By incorporating an integral control as shown in Figure 
13.15, the output will, in the steady state, be unaffected by 
the disturbance, viz. 

Ts 
Y�s� � ( D�s�(

Ts2 �s � a� � K�1 � Ts�(
and so 

yss ! 0 

This controller is called a proportional-plus-integral controller. 
An unfortunate side-effect of incorporating integral con-

trol is that it tends to destabilise the system, but this can be 
minimised by careful choice of T. In a particular case it 
might be that proportional-plus-integral-plus-derivative (PID) 
control may be called for, the amount of each particular 
control type being carefully proportioned. 

In the foregoing discussions we have seen, albeit by using 
specific simple examples, how the behaviour of a plant might 
be modified by use of certain techniques. It is hoped that this 
will leave the reader with some sort of feeling for what might 
be done before embarking on more general tools, which tend 
to appear rather rarefied and isolated unless a basic physical 
feeling for system behaviour is present. 

13.9 Root-locus method 

The root locus is merely a graphical display of the variation 
of the poles of the closed-loop system when some parameter, 
often the gain, is varied. The method is useful since the loci 
may be obtained, at least approximately, by straightforward 
application of simple rules, and possible modification to 
reshape the locus can be assessed. 

Considering once again the unity-feedback system with the 
open-loop transfer function KG(s) �Kb(s)/a(s), where b(s) 
and a(s) represent mth- and nth-order polynomials, respect-
ively, and n >& m, then the closed-loop transfer function may 
be written as 

KG�s�( Kb�s�(
W �s� � ( �(

1 � KG�s�( a�s� � Kb�s�(
Note that the system is nth order and the zeros of the closed 
loop and the open loop are identical for unity feedback. 
The characteristic behaviour is determined by the roots 
of 1 �KG(s) � 0 or  a(s) �Kb(s) � 0. Thus, G(s) ��(1/K) or  
b(s)/a(s) ��(1/K). 

Let sr be a root of this equation; then � � 
b�sr�( 1 

mod �(
a�sr�( K 

and � � 
b�sr�(

phase � 180� � n360�(
a�sr�(

where n may take any integer value, including n � 0. Let 
z1,  . . .  ,  zm be the roots of the polynomial b(s) � 0, and 
p1, . .  . ,  pn be the roots of the polynomial a(s) � 0. Then 

m


b�s� � ( �s � zi �

i�1


Y 

Figure 13.15 Schematic diagram of the proportional-plus-integral control system 
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and 
n Y 

a�s� � ( �s � pi �(
i�1 

Therefore 

m Y 
jsr � zi j(

1i�1 �( ;& the magnitude condition n Y K 

i�1 

jsr � pi j(

and 

m X X n 

phase�sr � zi � � ( phase�sr � pi � � 180� � n360�;

i�1 i�1


the angle or phase condition 

Now, given a complex number pj, the determination of 
the complex number (s � pj), where s is some point in the 
complex plane, is illustrated in Figure 13.16, where the 
mod(s � pj) and phase(s � pj) are also illustrated. The deter-
mination of the magnitudes and phase angles for all the 
factors in the transfer function, for any s, can therefore be 
done graphically. 

The complete set of all values of s, constituting the root 
locus may be constructed using the angle condition alone; 
once found, the gain K giving particular values of sr may be 
easily determined from the magnitude condition. 

Example Suppose that G(s) �K/[(s � a)(s � b)], then it is 
fairly quickly established that the only sets of points satisfy-
ing the angle condition 

�phase�sr � a� � phase�sr � b� � 180 � n360�(

are on the line joining �a to �b and the perpendicular 
bisector of this line (Figure 13.17). 

13.9.1 Rules for construction of the root locus 

(1) The angle condition must be obeyed. 
(2) The	 magnitude condition enables calibration of the 

locus to be carried out. 
(3) The root locus on the real axis must be in sections to the 

left of an odd number of poles and zeros. This follows 
immediately from the angle condition. 

Figure 13.16 Representation of (s � pj) on the s plane (I � js � pjj; 
�&��(s �pj)) 

Figure 13.17 Root-locus diagram for KG(s) �K/[(s �a)(s � b)] 

(4) The root locus must be symmetrical with respect to the 
horizontal real axis. This follows because complex roots 
must appear as complex conjugate pairs. 

(5) Root loci always emanate from the poles of the open-
loop transfer function where K � 0. Consider 
a(s) �Kb(s) � 0; then a(s) � 0 when K � 0 and the roots 
of this polynomial are the poles of the open-loop trans-
fer function. Note that this implies that there will be n 
branches of the root locus. 

(6)	 m of the branches will terminate at the zeros for K !1. 
Consider a(s) �Kb(s) � 0, or (1/K)a(s) � b(s) � 0, 
whence as K!1, b(s)!0 and, since this polynomial 
has m roots, these are where m of the branches 
terminate. The remaining n �m branches terminate at 
infinity (in general, complex infinity). 

(7) These	 n �m branches go to infinity along asymptotes 
inclined at angles �i to the real axis, where 

�2i � 1�(
�i �( 180�;& i � 0; 1; . . . ; �n �m � 1�(

n �m 
Consider a root sr approaching infinity, (sr � a) ! sr for 
all finite values of a. Thus, if �i is the phase sr, then each 
pole and each zero term of the transfer function term 
will contribute approximately �i and ��i, respectively. 
Thus, 

�i �n �m� � 180� � i360�


�2i � 1�

�i �( 180�;& i � 0; 1; . . . ; �n �m � 1�(

n �m 
(8) The centre of these asymptotes is called the `asymptote 

centre' and is (with good accuracy) given by  !,
�

n


�A �( pi �

i�1


m 

zi n �m�(
j�1 

X X 
This can be shown by the following argument. For very 
large values of s we can consider that all the poles and 
zeros are situated at the point �A on the real axis. Then 
the characteristic equation (for large values of s) may be 
written as 

K 
1 � � 0 �s � �A�n�m 

or approximately, by using the binomial theorem, 

K 
1 �	 � 0 

sn�m � �n �m�sn�m�1 �A 
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Also, the characteristic equation may be written as 
m 

K �s � zi �(
1 �( i�1 

Y 
� 0 m


�s � pi �

i�1


Y 
Expanding this for the first two terms results in 

K 
1 �	 � 0 

sn� sn�m�1m � �an�1 � bm�1�
where 

m n X X 
bm�1 �( zi and an�1 �( pj 

i�1 i�1 

whence 

�an�1 � bm�1� � �n �m��A 

an�1 � bm�1 
�A �(

n �m 
as required. 

(9) When a locus breaks away from the real axis, it does so 
at the point where K is a local maximum. Consider the 
characteristic equation 1 �K [b(s)/a(s)] � 0; then we can 
write K � p(s), where p(s) �� [a(s)/b(s)]. Now, where 
two poles approach each other along the real axis they 
will both be real and become equal when K has the max-
imum value that will enable them both to be real and, 
of course, coincident. Thus, an evaluation of K around 
the breakaway point will rapidly reveal the breakaway 
point itself. 

Example Draw the root locus for 

K�s � 1�(
KG�s� � (

s�s � 2��s � 3�(
Procedure (Figure 13.18): 

(1) Plot the poles of the open-loop system (i.e. at	 s � 0, 
s ��2, s ��3). 

(2) Plot the zeros of the system (i.e. at z ��1). 
(3) Determine the sections on the real axis at which closed-

loop poles can exist. Obviously these are between 0 and 
�1 (this root travels along the real axis between these 
values as K goes from 0 !1), and between �2 and  �3 
(two roots are moving towards each other as K increases 
and, of course, will break away). 

(4) Angle of asymptotes 
1 

�1 � � 180� � 90�(
2

3


�2 � � 180� � 270�(
2 

(5) Centroid �A is located at 

�2 � 3 � 1 
�A �( � �2 

2 
(6) Breakaway point, �B 

�B �2.45 �2.465 �2.48 

K 0.418 0.4185 0.418 

(7) Modulus. For a typical root situated at, for example, 
point A, the gain is given by K � l2l3l4/l1. 

Frequency-response methods 13/15 

Figure 13.18 Root-locus construction for KG(s) � [K(s � 1)]/ 
[s(s �2)(s � 3)] 

After a little practice the root locus can be drawn 
very rapidly and compensators can be designed by pole-
zero placement in strategic positions. A careful study of the 
examples given in the table will reveal the trends obtainable 
for various pole-zero placements. 

13.10 Frequency-response methods 

Frequency-response characterisation of systems has led to 
some of the most fruitful analysis and design methods in 
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the whole of control system studies. Consider the situation 
of a linear, autonomous, stable system, having a transfer 
function G(s), and being subjected to a unit-magnitude sinu-
soidal input signal of the form exp ( j!t), starting at t � 0. 
The Laplace transformation of the resulting output of the 
system is 

C�s� � G�s�=�s � j!�(
and the time domain solution will be 0	 1 

Terms whose exponential terms 
c�t� � G� j!� exp� j!t� � ( correspond to the roots @	 A 

of the denominator of G�s�(
Since a stable system has been assumed, then the effects of 
the terms in the parentheses will decay away with time and 
so, after a sufficient lapse of time, the steady-state solution 
will be given by 

css �t� � G� j!� exp� j!t�(
The term G( j!), obtained by merely substituting j!& for s in 
the transfer function form, is termed the frequency-response 
function, and may be written 

G� j!� � jG� j!�j�G� j!�(
where jG( j!)j �mod G( j!) and �G( j!) � phase G( j!). This 
implies that the output of the system is also sinusoidal in 
magnitude jG( j!)j with a phase-shift of �G( j!) with refer-
ence to the input signal. 

Example Consider the equation of motion 

my�� bz � ky � f �t�(
Y�s�( 1 � G�s� � (
F �s�( ms2 � bs � k 

If f(t) �F0 exp( j!t), then 

F0 exp� j!t�(
yss�t� � (�k � !2m� � j!b 

whence 

F0 exp� j�!t � ���(
yss�t� �q���������������������������������������� 

2 �k � !2m�2 � �b!�
where �&� arctan b!/(k �m!2). 

Within the area of frequency-response characterisation 
of systems three graphical techniques have been found to be 
particularly useful for examining systems and are easily 
seen to be related to each other. These techniques are 
based upon: 

(1) The	 Nyquist plot, which is the locus of the frequency-
response function plotted in the complex plane using 
!& as a parameter. It enables stability, in the closed-loop 
condition, to be assessed and also gives an indication of 
how the locus might be altered to improve the behaviour 
of the system. 

(2) The	 Bode diagram, which comprises two plots, one 
showing the amplitude of the output frequency response 
(plotted in decibels) against the frequency !& (plotted 
logarithmically) and the other of phase angle �& of the 
output frequency response plotted against the same 
abscissa. 

(3) The	 Nichols chart, a direct plot of amplitude of the 
frequency response (again in decibels) against the phase 

angle, with frequency !& as a parameter, but further 
enables the closed-loop frequency response to be read 
directly from the chart. 

In each of these cases it is the open-loop steady-state 
frequency response, i.e. G( j!), which is plotted on the 
diagrams. 

13.10.1 Nyquist plot 

The closed-loop transfer function is given by 

C�s�( G�s�(�(
R�s�( 1 �H�s�G�s�(
and the stability is determined by the location of the roots 
of 1 �H(s)G(s) � 0, i.e. for stability no roots must have 
positive-real parts and so must not lie on the positive-real half 
of the complex plane. Assume that the open-loop transfer 
function H(s)G(s) is stable and consider the contour C, the  
so-called ̀ Nyquist contour' shown in Figure 13.19, which con-
sists of the imaginary axis plus a semicircle of large enough 
radius in the right half of the s plane such that any zeros of 
1 �H(s)G(s) will be contained within this contour. This 
contour Cn is mapped via 1 �H(s)G(s) into another curve &
into the complex plane s 0. It follows immediately from com-
plex variable theory that the closed loop will be stable if the 
curve & does not encircle the origin in the s 0( plane and 
unstable if it encircles the origin or passes through the origin. 
This result is the basis of the celebrated Nyquist stability 
criterion. It is rather more usual to map not 1 �H(s)G(s) 
but H(s)G(s); in effect this is merely a change of origin from 
(0, 0) to (�1, 0), i.e. we consider curve n 

0( . 
The statement of the stability criterion is that the closed-

loop system will be stable if the mapping of the contour Cn 
by the open-loop frequency-response function H( j!)G( j!) 
does not enclose the so-called critical point (�1, 0). 
Actually further simplification is normally possible, for: 

(1)	 jH(s)G(s)j! 0 as  jsj!1, so that the very large semi-
circular boundary maps to the origin in the s 0( plane. 

(2)	 H(�j!)G(�j!) is the complex conjugate of H( j!)G( j!) 
and so the mapping of H(�j!)G(�j!) is merely the 
mirror image of H( j!)G( j!) in the real axis. 

(3) Note:	 H( j!)G( j!) is merely the frequency-response 
function of the open loop and may even be directly 
measurable from experiments. Normally we are mostly 
interested in how this behaves in the vicinity of the 
(�1, 0) point and, therefore, only a limited frequency 
range is required for assessment of stability. 

The mathematical mapping ideas stated above are perhaps 
better appreciated practically by the so-called left-hand rule 
for an open-loop stable system, which reads as follows: if the 
open-loop sinusoidal response is traced out going from low 
frequencies towards higher frequencies, the closed loop will 
be stable if the critical point (�1, 0) lies on the left of all 
points on H( j!)G( j!). If this plot passes through the critical 
point, or if the critical point lies on the right-hand side of  
H( j!)G( j!), the closed loop will be unstable. 

If the open loop has poles that actually lie on the imagin-
ary axis, e.g. integrator 1/s, then the contour is indented as 
shown in Figure 13.20 and the above rule still applies to this 
modification. 

13.10.1.1 Relative stability criteria 

Obviously the closer the H( j!)G( j!) locus approaches 
the critical point, the more critical is the consideration of 
stability, i.e. we have an indication of relative stability, 
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Figure 13.19 

Figure 13.20 Modification of the mapping contour to account for 
poles appearing at the origin 

given a measure by the gain and phase margins of the 
system. 

If the modulus of H( j!)G( j!) �X with a phase shift of 
180�, then the gain margin is defined as 

Gain margin � 1=X 

The gain margin is usually specified in decibels, where we have 

Gain margin �dB� � 20 log�1=X� � �20 log X 

The phase margin is the angle which the line joining the 
origin to the point on the open-loop response locus corres-
ponding to unit modulus of gain makes with the negative-
real axis. These margins are probably best appreciated 
diagrammatically (Figure 13.21). They are useful, since a 

Illustration of Nyquist mapping: (a) mapping contour on the s plane; (b) resulting mapping of 1 �H(s)G(s) �0 and the shift of the origin 

Figure 13.21 Illustration of the gain and phase margins. Gain margin 
�1/X; phase margin � 0 

rough working rule for reasonable system damping and sta-
bility is to shape the locus so that a gain margin of at least 
6 dB is achieved and a phase margin of about 40�(. 

Examples of the Nyquist plot are shown in Figure 13.22. 
Although from such plots the modifications necessary to 
achieve more satisfactory performance can be easily appre-
ciated, precise compensation arrangements are not easily 
determined, since complex multiplication is involved and 
an appeal to the Bode diagram can be more valuable. 

13.10.2 Bode diagram 

As mentioned above, the Bode diagram is a logarithmic 
presentation of the frequency response and has the advantage 
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over the Nyquist diagram that individual factor terms may 
be added rather than multiplied, the diagram can usually 
be quickly sketched using asymptotic approximations and 
several decades of frequency may be easily considered. 

Now suppose that 

H�s�G�s� � H�s�G1�s�G2�s�G3 �s� . . .  
i.e. the composite transfer function may be thought of as 
being composed of a number of simpler transfer functions 
multiplied together, so 

jH� j!�G� j!�j � jH� j!�jjG1� j!�jjG2� j!�jjG3� j!�j . . .  
20 log jH� j!�G� j!�j �( 20 log jH� j!�j � 20 log jG1 � j!�j(
� 20 logjG2� j!�j � 20 logjG3� j!�j � � � � (
This is merely each individual factor (in decibels) being 
added algebraically to a grand total. Further, 

�H� j!�G� j!�� �H� j!� � �G1� j!� � �G2� j!�(
� �G3� j!� � � � � (

i.e. the individual phase shift at a particular frequency may 
be added algebraically to give the total phase shift. 

It is possible to construct Bode diagrams from elemental 
terms including gain (K), differentiators and integrators 
(s and 1/s), lead and lag terms ((as � 1) and (1 � as)�1), 
quadratic lead and lag terms ((bs2 � cs � 1) and 
(bs2 � cs � 1)�1), and we consider the individual effects of 
their presence in a transfer function on the shape of the 
Bode diagram. 

(a) Gain term, K The gain in decibels is simply 20 log K 
and is frequency independent; it merely raises (or lowers) 
the combined curve 20 log K dB. 

(b) Integrating term, 1/s Now jG(j!)j � 1/!& and 
�G(j!) ��90�( (a constant) and so the gain in decibels 
is given by 20 log(1/!) ��20 log !. On the Bode 
diagram this corresponds to a straight line with slope 
�20 dB/decade (or �6 dB/octave) of frequency and 
passes through 0 dB at !� 1 (see plot 4 in Figure 13.22). 

(c) Differentiating term, s Now jG(j!)j �!& and �G(j!) � 90�(
(a constant) and so the gain in decibels is given by 20 log !. 
On the Bode diagram this corresponds to a straight line 
with slope 20 dB/decade of frequency and passes through 
0dB  at  !� 1. 

(d) First-order lag term, (1  � s�)�1 The gain in decibels is 
given by � 

1 
�1=2


20 log � �10 log�1 � !2 �&2�

1 � !2�2 

and the phase angle is given by �G(j!) ��tan�1 !� . 
2When !2 �& is small compared with unity, the gain will 

2be approximately 0 dB, and when !2 �& is large com-
pared with unity, the gain will be �20 log !� . With 
logarithmic plotting this specifies a straight line having 
a slope of �20 dB/decade of frequency (6 dB/octave) 
intersecting the 0 dB line at !� 1/� . The actual gain at 
!� 1/�& is �3 dB and so the plot has the form shown in 
plot 1 of Figure 13.22. The frequency at which !� 1/�& is 
called the corner or break frequency. The two straight 
lines, i.e. those with 0 dB and �20 dB/decade, are called 
the `asymptotic approximations' to the Bode plot. 
These approximations are often good enough for not 
too demanding design purposes. 

The phase plot will lag a few degrees at low frequen-
cies and fall to �90�( at high frequency, passing through 
�45�( at the break frequency. 

(e) First-order lead term, 1  �!�& The lead term proper-
ties may be argued in a similar way to the above, but 
the gain, instead of falling, rises at high frequencies at 
20 dB/decade and the phase, instead of lagging, leads by 
nearly 90�( at high frequencies. 

( f ) Quadratic-lag term, 1/(1  � 2��s � �&2 s 2) The gain for the 
quadratic lag is given by 2 3 !2� �2 � �2! !& 5�10 log 4 1 � �( 2�&

!n !n 

and the phase angle by " # 
2��!=!n�(�G� j!� � (arctan �


1 � �!=!n�2


where �& � 1/!n. At low frequencies the gain is approxi-
mately 0 dB and at high frequencies falls at �40 dB/ 
decade. At the break frequency !� 1/�& the actual gain is 
20 log (1/2�). For low damping (say � < &0.5) an asymptotic 
plot can be in considerable error around the break 
frequency and more careful evaluation may be required 
around this frequency. The phase goes from minus a 
few degrees at low frequencies towards �180�( at high 
frequencies, being �90�( at !� 1/� . 

(g) Quadratic lead term, 1  � 2��s � �&2 s 2 This is argued in a 
similar way to the lag term with the gain curves 
inscribed and the phase going from plus a few degrees 
to 180�( in this case. 

Example Plot the Bode diagram of the open-loop fre-
quency-response function 

10�1 � j!�(
G� j!� � (

j!� j!&� 2�� j!&� 3�(
and determine the gain and phase margins (see Figure 
13.23). Note: Figure 13.22 shows a large number of 
examples and also illustrates the gain and phase 
margins. 

13.10.3 Nichols chart 

This is a graph with the open-loop gain in decibels as 
co-ordinate and the phase as abscissa. The open-loop 
frequency response is for a particular system and is plotted 
with frequency !& as parameter. Now the closed-loop 
frequency response is given by 

G� j!�(
W � j!� � (

1 � G� j!�(
and corresponding lines of constant magnitude and con-
stant phase of W( j!) are plotted on the Nichols chart as 
shown in Figure 13.24. 

When the open-loop frequency response of a system has 
been plotted on such a chart, the closed-loop frequency 
response may be immediately deduced from the contours 
of W( j!). 

13.11 State-space description 

Usually in engineering, when analysing time-varying physical 
systems, the resulting mathematical models are in differential 
equation form. Indeed, the introduction of the Laplace 
transformation, and similar techniques, leading to the whole 
edifice of transfer-function-type analysis and design methods 
are, essentially, techniques for solving, or manipulating to 
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Figure 13.23 (a) Gain and phase curves for individual factors (see Figure 13.18); (b) Composite gain and phase curves. Note that the phase 
margin is about 60�, and the gain margin is infinite because the phase tends asymptotically to �180�(

advantage, differential equation models. In the state-space 
description of systems, which is the concern of this section, 
the models are left in the differential equation form, but 
rearranged into the form of a set of first-order simultaneous 
differential equations. There is nothing unique to systems 
analysis in doing this, since this is precisely the required form 
that differential equations are placed in if they are to be 
integrated by means of many common numerical techniques, 
e.g. the Runge±Kutta methods. Most of the interest in the 
state-space form of studying control systems stems from the 
1950s, and intensive research work in this area has continued 
since then; however, much of it is of a highly theoretical 
nature. It is arguable that these methods have yet to fulfill the 

hopes and aspirations of the research workers who developed 
them. The early expectation was that they would quickly 
supersede classical techniques. This has been very far from 
true, but they do have a part to play, particularly if there 
are good mathematical models of the plant available and 
the real plant is well instrumentated. 

Consider a system governed by the nth order linear 
constant-coefficient differential equation 

dny dy� � � � (� a1 � a0y �( ku�t�(
dtn dt 
where y is the dependent variable and u(t) is a time-variable 
forcing function. 
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Figure 13.24 Nichols chart and plot of the system shown in Figure 13.23. Orthogonal families of curves represent constant W(j!) and constant �W(j!) 

Let y � x1, then which may be written in matrix notation as 

dy �( dx1 �( x2 
x �( Ax � bu�t�(

dt dt 
where x � [x1, . . . ,  xn]

T and is called the `state vector',
say, and b � [0,  0, . . .  ,  k]T and A is the n � n matrix pre-multiplying 
d2 y dx2� � x3
dt2 dt 
dn�1 y dxn�1� �( xn
dtn�1 dt 

From the governing differential equation we can write 

dny dxn�( � �a0x1 � a1x2 � � � � an�1xn � ku�t�(
dtn dt 
i.e. the nth order differential equation has been transformed 
into n first-order equations. These can be arranged into 
matrix form: 2 3 

x on the right-hand side of Equation (13.3). 
It can be shown that the eigenvalues of A are equal to the 

characteristic roots of the governing differential equation 
which are also equal to the poles of the transfer function 
Y(s)/U(s). Thus the time behaviour of the matrix model is 
essentially governed by the position of the eigenvalues of  
the A matrix (in the complex plane) in precisely the same 
manner as the poles govern the transfer function behaviour. 
Hence, if these eigenvalues do not lie in acceptable positions 
in this plane, the design process is to somehow modify the 
A matrix so that the corresponding eigenvalues do have 
acceptable positions (cf. the placement of closed-loop poles 
in the s plane). 

x1 6 x2 7 
2 32 3 2 3 

0 1 0 : : : : & x1 0 
0 0 1 0 : : : & 76x2 7 6 0 7 Example Consider a system governed by the general second-�( u�t�(6 7 6 

... �(7 6 76 7 6 7 ... 0 1 54 5 4 0 5 order linear differential equation 7 4 
_
_

4 5 
xn�1 
xn 

�a0 �a1 . . .  �an�1 xn k 
d2 dy 2� 2�!n � !ny �( !2 u n 

y 
13:3�( dt2 dt�

6 6 
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Let y � x1, then d2 y dy du � a1 � a2 y � b0 u � b1 
dy �( dx1

dt2 dt dt 
� x2

dt dt Let y � x1, and 

and so dy �( dx1 � x2 � b1u 
dt dt

dx2 � �!2 x1 � 2�!nx2 � !2 u thenndt n 

or 
d2 y dx2 du du 2 3 � � b1 � �a1�x2 � b1 u� � a0x � b0u � b1 

x1 dt2 dt dt dt_ � �� � � � 
0 1 x1 0 " # " #" # " # � �( u �13:4�( x1 0 1 x1 b1_

... �!2 !2�2�!n x2 � �n n u x2 

The eigenvalues of the A matrix are given by the solution 
to the equation �&2 � 2�!n�&�!2 � 0, i.e. n p������������� 
�1;2 � ��!n � !n �2 � 1 

Now let u � r � k1x1 � k2x2 where r is an arbitrary, or refer-
ence, value or input, and k1 and k2 are constants. Note this 
is a feedback arrangement, since u has become a linear func-
tion of the state variables which, in a dynamic system, might 
be position and velocity. Substituting for u in equation 
(13.3), gives 2 3 

_ �a0 �a1 x2 b0 � a1b1x2 

Note that care may be necessary in interpreting the x deriva-
tives in a physical sense. 

The state-space description is also a convenient way of 
dealing with multi-input/multi-output systems. A simple 
example is shown in Figure 13.25, where U1(s) and U2(s) 
are the inputs and Y1(s) and Y2(s) are the corresponding 
outputs, and so 

_

k1 k3
Y1�s� � ( U1�s� � ( U2�s�(

s � a1 s � a3 

and x1_
... 

� �� � � � 
0 1 x1� �( 0 

r k2 k4 �!2 
n !2 

n 
Y2�s� � ( U1�s� � ( U2�s�1 � k1� �!n�2�& � !nk2�( x2�

s � a1 s � a4x2 

The eigenvalues of the A matrix are given by the roots 
of �2 � (2�!n � !2k2)�&� !2(1 � k1) � 0 and, by choosing n n
suitable values for k1 and k2 (the feedback factors), the 
eigenvalues can be made to lie in acceptable positions in the 
complex plane. Note that, in this case, k1 alters the effective 
undamped natural frequency, and k2 alters the effective 
damping of the second-order system. 

If the governing differential equation has derivatives on 
the right-hand side, then the derivation of the first-order 
set involves a complication. Overcoming this is easily 
illustrated by an example. Suppose that 

_
The first of these two equations may be written as 

�s 2 � s�a1 � a2� � a1a3�Y1�s� � k1 U1�s� � k3 U2�s�(
or 

d2 y1 dy1� �a1 � a2 � � a1 a3y1 � k1u1 � kzu2
dt2 dt 

let y1 � x1, then 

dx1dy1 � � x2
dt dt 

Figure 13.25 Block diagram of a two-input/two-output multi-variable system 
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and 

d2 y1 dx2�( � ��a1 �( a2�x2 �( a1a3x1 �( k1u1 �( k3u2
dt2 dt 
Similarly, for the second of the two equations, writing 

dx3 
y2 �( x3 and 

dy2 � �( x4
dt dt 

leads to 

d2 y2 dx4�( � ��a2 �( a4�x4 �( a2a4x3 �( k2u1 �( k4u2
dt2 dt 

Whence the entire set may be written as 

_x1 
2 3 

0 1 
2 

0 0 
3 

_x1 
2 3 

_x2 

_x3 

6 6 6 4 
7 7 7 5 �( �a1a3 ��a1 � a3�(

0 0 

6 6 6 4 0 

0 

0 

1 

7 7 7 5 _x2 

_x3 

6 6 6 4 
7 7 7 5 

_x4 0 0 �a2 a4 ��a2 � a4 �( _x4 

0 0 
2 3 
�( k1 k3 

0 0 

k2 k4 

6 6 6 4 
7 7 7 5 u1 

u2 

� � 

The problem is now how to specify u1 and u2 (e.g. a linear 
combination of state variables similar to the simple second-
order system above), so as to make the plant behave in an 
acceptable manner. It must be pointed out that the theory 
of linear matrix-differential equations is an extremely well 
developed mathematical topic and has been extensively 
plundered in the development of state-space methods. Thus 
a vast literature exists, and this is not confined to linear 
systems. Such work has, among other things, discovered 
a number of fundamental properties of systems (for exam-
ple, controllability and observability); these are well beyond 
the scope of the present treatment. The treatment given here 
is a very short introduction to the fundamental ideas of the 
state-space description. 

13.12 Sampled-data systems 

Sampled-data systems are ones in which signals within the 
control-loop are sampled at one or more places. Some sort 
of sampling action may be inherent in the very mode of  
operation of some of the very components comprising 
the plant, e.g. thyristor systems, pulsed-radar systems and 
reciprocating internal combustion engines. Moreover, sampling 
is inevitable if a digital computer is used to implement 
the control laws, and/or used in condition monitoring 

operations. Nowadays, digital computers are routinely used 
in control-system operation for reasons of cheapness and 
versatility, e.g. they may be used not only to implement the 
control laws, which can be changed by software alterations 
alone, but also for sequencing control and interlocking in, 
say, the start up and safe operation of complex plant. 
Whatever the cause, sampling complicates the mathematical 
analysis and design of systems. 

Normally most of the components, comprising the system 
to be controlled, will act in a continuous (analogue) 
manner, and hence their associated signals will be continuous. 
With the introduction of a digital computer it is necessary 
to digitise the signal, by an analogue-to-digital converter 
before the signal enters the computer. The computer pro-
cesses this digital sequence, and then outputs another digital 
sequence which, in turn, passes to a digital-to-analogue con-
verter. This process is shown schematically in Figure 13.26. 

In this diagram the sampling process is represented by the 
periodic switch (period T), which at each sampling instant 
is closed for what is regarded as an infinitesimal time. 
The digital-to-analogue process is represented by the hold 
block. Thus the complete system is a hybrid one, made up 
of an interconnection of continuous and discrete devices. 
The most obvious way of representing the system mathema-
tically is by a mixed difference-differential equation set. 
However, this makes a detailed analysis of the complete 
system difficult. 

Fortunately, provided the investigator or system designer 
is prepared to accept knowledge of the system's behaviour 
at the instants of sampling only, a comparatively simple 
approach having great similarity to that employed for 
wholly continuous systems is available. At least for early 
stages of the analysis or design proposal, the added com-
plications involved in this process are fairly minor. 
Further, the seemingly severe restriction of knowing the sys-
tem's behaviour at the instants of sampling only is normally 
quite acceptable; for example, the time constants associated 
with the plant will generally be much longer than the 
periodic sampling time, so the plant effectively does not 
change its state significantly in the periodic time. The sam-
pling time period is a parameter which often can be chosen 
by the designer, who will want sampling to be fast enough 
to avoid aliasing problems; however, the shorter the 
sampling period the less time the computer has available 
for other loops. Suffice it to say that the selection of the 
sampling period is normally an important matter. 

If we take a continuous signal y(t), say, and by the 
periodic sampling process convert it into a sequence of 
values y(n), where n represents the nth sampling period, then 
the sequence y(n) becomes the mathematical entity we 
manipulate, and the values of y(t) between these samples 
will not be known. However, if at an early stage it is essen-
tial to know the inter-sample behaviour of the system with 
some accuracy, then advance techniques are available for 
this purpose.1 In addition, it is now fairly routine to simu-
late control system behaviour before implementation, and a 

Figure 13.26 General arrangement of a sampled-data system 
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good simulation package should be capable of illustrating 
the inter-sample behaviour. 

We need techniques for mathematically manipulating 
sequences, and these are discussed in the following section. 

13.13 Some necessary mathematical 
preliminaries 

13.13.1 The z transformation 

This transformation plays the equivalent role in sampled-
data system studies as the Laplace transformation does 
in the case of continuous systems; indeed, these two trans-
formations are mathematically related to each other. It is 
demonstrated below that the behaviour of sampled-data 
systems at the sampling instant is governed mathematically 
by difference equations, e.g. a linear system might be gov-
erned by the equation 

y�n� � a1y�n � 1� � a2y�n � 2� � b1x�n� � b2x�n � 1�(
where, in the case of y(n), the value of a variable at instant n 
is in fact dependent on a linear combination of its previous 
two values and the current and previous values of an 
independent (forcing variable) x(n). In a similar way to 
using the Laplace transformation to convert linear differential 
equations to transfer-function form, the z transformation is 
used to convert linear difference equations into the so-called 
`pulse transfer-function form'. The definition of the z trans-
formation of a sequence y(n), n � 0, 1, 2, . . . , is 

/X
Z�y�n�� � Y �z� � ( y�n�z �n 

n�0 

The z transformations of commonly occurring sequences 
are listed in Table 13.1, and a simple example will illustrate 
how such transformations may be found. 

Suppose y(n) � nT(n � 0, 1, 2, . . . ) such a sequence would 
be obtained by sampling the continuous ramp function 
y(t) � t, at intervals of time T. Then, by definition, 

Z� y�n�� � Y �z� � 0 � Tz�1 � 2Tz�2 � � � � (
� T �z �1 � 2z �2 � � � �� (

Tz �
�z � 1�2


It can also be shown that 

Z� y�n � 1�� � z �1Z� y�n�� � z �1Y �z�(
and 

Z� y�n � 2�� � z �2Z� y�n�� � z �2Y �z�(
Then, applying this to the difference equation above, we have 

Y�z� � ��a1 z �1 � a2z �2�Y �z� � �b0 � b1z �1�X�z�(
or 

�b0 � b1z�1 �X�z�(
Y�z� � (�1 � a1z�1 � a2z�2�(
So that, if x(n) or  X(z) is given, Y(z) can be rearranged into 
partial fraction form, and y(n) determined from the table. 
For example, suppose that 

z�z � 0:25�(
Y�z� � (�z � 1��z � 0:5�(

Sampler and zero-order hold 13/25 

then 

Y �z�( 1:5 0:5 
z z � 1 z � 0:5 

or 

1:5z 0:5z 
Y �z� � ( �(

z � 1 z � 0:5 
Whence, from the tables we see that 

y�n� � 1:5 � 0:5 exp��0:60n�(
The process of dividing Y(z) by  z before taking partial 

fractions is important, as most tabulated values of the 
transformation have z as a factor in the numerator, and 
the partial function expansion process needs the order of 
the denominator to exceed that of the numerator. 

An alternative method of approaching the z transform is 
to assume that the sequence to be transformed is a direct 
consequence of sampling a continuous signal using an 
impulse modulator. Thus a given signal y(t) is sampled 

* with periodic time T, to give the assumed signal y (t), where 
* y �t� � y�o���t� � y�T ���t � T � � y�2T ���t � 2T� � � � � (

where �(t) is the delta function. 
* Taking the Laplace transformation of y (t) gives the series 

* �sT � y�l�y �t�� � y�o� � y�T �e 2T �e �2sT � � � � (
On making the substitution e sT � z, then the resulting ser-

ies is identical to that obtained by taking the z transforma-
tion of the sequence y(n). For convenience, we often write 
Y(z) �Z [ y *(t)]. 

z � e sT may be regarded as constituting a transformation 
of points in an s plane to those in a z plane, and this has 
exceedingly important consequences. If, for example, we 
map lines representing constant damping �, and constant 
natural frequency !n, for a system represented in an s 
plane onto a z plane, we obtain Figure 13.27. 

There are important results to be noted from this diagram. 

(1)	 The stability boundary in the s plane (i.e. the imaginary 
axis) transforms into the unit circle jzj � 1 in  the  z plane. 

(2)	 Points in the z plane indicate responses relative to the 
periodic sampling time T. 

(3)	 The negative real axis of the z plane always represents 
half the sampling frequency !s, where !s � 2�/T. 

(4)	 Vertical lines (i.e. those with constant real parts) in the 
left-half plane of the s plane map into circles within 
the unit circle in the z plane. 

(5)	 Horizontal lines (i.e. lines of constant frequency) in the 
s plane map into radial lines in the z planes. 

(6)	 The mapping is not one-to-one; and frequencies greater 
than !s/2 will coincide on the z plane with corresponding 
points below this frequency. Effectively this is a con-
sequence of the Nyquist sampling theorem which states, 
essentially, that faithful reconstruction of a sampled 
signal cannot be achieved if the original continuous 
signal contained frequencies greater than one-half the 
sampling frequency. 

A vitally important point to note is that all the roots of 
the denominator of a pulse transfer function of a system 
must fall within the unit circle, on the z plane, if the system 
is to be stable; this follows from (1) above. 

13.14 Sampler and zero-order hold 

The sampler produces a series of discrete values at the 
sampling instant. Although in theory these samples exist for 
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Figure 13.27 Natural frequency and damping loci in the z plane. The lower half is the mirror image of the half shown. (Reproduced from Franklin 
et al.,2 courtesy of Addison-Wesley) 

zero time, in practice they can be taken into the digital com-
puter and processed. The output from the digital computer 
will be a sequence of samples with, again in theory, each 
sample existing for zero time. However, it is necessary to have 
a continuous signal constructed from this output, and this is 
normally done using a zero-order hold. This device has the 
property that, as each sample (which may be regarded as a 
delta function) is presented to its input, it presents the strength 
of the delta function at its output until the next sample arrives, 
and then changes its output to correspond to this latest value, 
and so on.  

This is illustrated diagrammatically in Figure 13.28. Thus 
a unit delta function �(t) arriving produces a positive unit-
value step at the output at time t. At time t �(T, we may 
regard a negative unity-value step being superimposed on 
the output. Since the transfer function of a system may be 

regarded as the Laplace transformation of the response 
of that system to a delta function, the zero-order hold has 
the transfer function 

1 �1 �( e �sT �(
s 

13.15 Block diagrams 

In a similar way to their use in continuous-control-system 
studies, block diagrams are used in sampled-data-system 
studies. It is convenient to represent individual pulse transfer 
functions in individual boxes. The boxes are joined together by 
lines representing their z transformed input/output sequences 
to form the complete block diagrams. The manipulation of 

Figure 13.28 Diagrammatic representation of input/output for zero-order hold 
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Figure 13.29 Cascade transfer functions with sampling between connections 

the block diagrams may be conducted in a similar fashion 
to that adopted for continuous systems. Again, it must be 
stressed that such manipulation breaks down if the boxes 
load one another. 

Consider the arrangement shown in Figure 13.29. Here  we  
have a number of continuous systems, represented by their 
transfer functions, in cascade. However, a sampler has been 
placed in each signal line, and so for each box we may write 

* * * * C1�s� � G1�s�R �s� ! C1 �s� � G1�s�R �s�(
* * * * C2�s� � G2�s�C1 �s� ! C2 �s� � G2�s�C1 �s�(
* * * C�s� � G3�s�C2 �s� ! C �s� � G1�s�C2 �s�(

Thus 
* * * * * C �s� � G1�s�G2�s�G3�s�R �s�(

i.e. 

C�z�( � G1�z�G2�z�G3�z�(
R�z�(
This, of course, generalises for n similar pulse transfer 
functions in series to give YC�z�( n 

�( Gi �z�(
R�z�(

i�1 

It is necessary to realise that this result does not apply if 
there is no sampler between two or more boxes. As an illus-
tration, Figure 13.30(a) shows the arrangement for which 
the above result applies. We have 

1 
G1�s� � (

s 

whence (see Table 13.1) 
z 

G1�z� � (
z � 1 

and 

1 
G2�s� � (

s � 1 

whence (see Table 13.1) 
z 

G2�z� � (
z � e�T 

Therefore, 

C�z�( z2 

� G1�z�G2�z� � (
R�z� �z � 1��z � e�T �(
Figure 13.30(b) shows the arrangement without a sampler 
between G1(s) and G2(s), and so � � �T �
� Z �

C�z�( 1 z�1 � e

�T �R�z�( s�s � 1� �z � 1��z � e

Note that Z[G1(s)G2(s)] is often written G1G2(z), and thus, 
in general, G1(z)G2(z) = G1G2(z). 

13.16 Closed-loop systems 

Figure 13.31 shows the sampler in the error channel of an 
otherwise continuous system. We may write 

* C�s� � G�s�E �s�(
and 

E�s� � R�s� �H�s�C�s�(
or 

* E�s� � R�s� �H�s�G�s�E �s�(
and 

* * * * E �s� � R �s� �HG �s�E �s�(
and so 

* 
* R �s�(

E �s� � (
1 �HG* �s�(

Thus 

C* G* �s� �s�(�(
R* �s�( 1 �HG* �s�(
or 

C�z�( G�z�(�(
R�z�( 1 �HG�z�(

Figure 13.30 Two transfer functions with (a) sampler interconnection and (b) with continuous signal connecting transfer functions 



//integras/b&h/Eer/Final_06-09-02/eerc013

13/28 Control systems 

Figure 13.31 Prototype sampled system with a sampler in the error 
channel 

Figure 13.32 Prototype sampled system with a sampler in the 
feedback channel 

If the sampler is in the feedback loop, as shown in Figure 
13.32, a similar analysis would show that 

GR�z�(
C�z� � (

1 �HG�z�(
Note that, in this case, it is not possible to take the ratio 
C(z)/R(z). We may conclude that the position of the 
sampler(s) within the loop has a vitally important effect on 
the behaviour of the system. 

Example Consider the arrangement shown in Figure 13.33. 
To calculate the pulse transfer function it is necessary to 
determine � � � 
L 

1 1 � 
1 � e �sT 

s s 

Consider (from Table 13.1) � �  
1 Tz 

Z �(
s2 �z � 1�2 

and, therefore, � � � �  
1 T 

Z e �sT � z �1Z 
1 �(

s2 s2 �z � 1�2 

Thus � � 
1 

Z �1 � e �Ts� �( T � G�z�(
s2 �z � 1�(

and 

C�z�( G�z�( T � �(
R�z�( 1 � G�z�( z � �T � 1�(

13.17 Stability 

It should be appreciated from the above that, in general, 
C(z)/R(z) results in a ratio of polynomials in z in a similar 
way as, for continuous systems, C(s)/R(s) results in a ratio of 
polynomials in s. Thus, just as the equation 1 �G(s)H(s) � 0 
is called the `characteristic equation' for the continuous 
system, 1 �GH(z) � 0 is the characteristic equation for the 
sampled-data system. Both of these characteristic equations 
are polynomials in their respective variables, and the positions 
of the roots of these equations determine the characteristic 
behaviour of the corresponding closed-loop systems. 
Mathematically, the process of determining the roots is 
identical in the two cases. The difference between the two 
characteristic equations arises because of the need to 
interpret the effects of the location of the roots, when they 
are plotted in their respective s and z planes, on the two 
plants. For continuous systems, if any of these poles are 
located in the right-half s plane, then the system is unstable. 
Similarly, since the whole of the left-hand s plane maps into 
the unit-circle of the z plane under the transformation 
z � e sT, then in the simple-data case, for stability all of the 
roots of 1 �GH(z) � 0 must lie within the unit circle. 

Much of the design process of control systems is to arrange 
for the roots of the characteristic equation to locate at 
desired positions in either the s or z plane. It will be recalled, 
from continuous theory, that the locus of these roots, as a 
particular parameter is varied, may be determined by using 
the root-locus technique. Thus, since the characteristic 
equation of the sample-data system has a similar form 
(i.e. a polynomial), the root-locus technique may be applied 
to 1 �GH(z) � 0 in exactly the same way. Only once the root-
locus has been determined is there a difference in interpreting 
the effects of pole positions between the two cases. 

13.18 Example 

Consider the system shown in Figure 13.34, and suppose 
that the requirement is to draw the root-locus diagrams 
for, say, sampling periods of 1 and 0.5 secs. 

The first requirement is to determine the pulse-transfer 
function for the open loop, i.e. G(z): 

Figure 13.33 Arrangement used in the example in Section 13.16 
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Figure 13.34 Arrangement used in the example in Section 13.18 

� � 
K�1 � e�Ts �( Thus, when T � 1 secs, 

G�z� � Z 
s2 �s � 1�( 0:368K�z � 0:718�(� � G1�z� � (�z � 1��z � 0:368�(� K�1 � z �1�Z 

1 
s2 �s � 1�(

and when T � 0.5 secs 
Consider 

0:107K�z � 0:841�(� � � � G2�s� � (1 1 1 1 �z � 1��z � 0:606�(
Z � Z � �(

s2 �s � 1�( s2 s s � 1 Both of these equations have two real poles and one zero 
where, from Table 13.2, we have pole, and the root loci are as shown in Figures 13.35 and 

13.36. It can be seen that the difference in the two sampling � � 
1 Tz z z times T causes fairly dramatic changes; when T � 1 secs the 

Z �( � �( system becomes unstable at K � 1.9, and when T � 0.5 secs the " # system becomes unstable at K � 3.9. The process of drawing 
s2 �s � 1� �z � 1�2 z � 1 �z � e�T �(

�Tz�T � e�T � 1� � 1 � e �1 � T�( the root locus for either a continuous plant or a sampled-� z �z � 1�2 �z � e�T �( data plant is identical. It is the interpretation of the posi-
tions of the roots that is different, although in both cases 

and so the design is to place the roots in acceptable locations in 
the two planes. It is possible to use Bode diagrams in 

K �z�T � e�T � 1� � 1 � e�T �1 � T ��( sampled-data design work and this is explained in many of 
G�z� � ( �z � 1��z � e�T �( the references given in the Bibliography at the end of this 

chapter. 

Figure 13.35 Root locus plot: G(z) � [0.368K(z � 0.718)]/[(z �1)(z � 0.368)] 
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Figure 13.36 Root-locus plot: G(z) � [0.107K(z � 0.841)]/[(z �1)(z �0.606)] 

13.19 Dead-beat response 

Consider the system shown above where T � 1 secs and 
K � 1; suppose that compensation of the form 

1:582�z � 0:368�(
D�z� � ( �z � 0:418�(
is inserted immediately after the sampler. Then it is easy to 
show that 

C�z�( 0:582�z � 0:71�(�(
R�z�( z2 

If 

z 
R�z� � (

z � 1 

i.e. r(t) is a unit step function, then 

0:582�z � 0:718�(
C�z� � (

z�z � 1�(� � 
1 0:582z � 0:418 �(
z z � 1 � � 
1 1 1 �( 0:582 �( �( � � � � (
z z z2 

i.e. c(0) � 0, c(1) � 0.582 and c(n) � 1, for n � 2, 3, . . . . 
The implication is that c(t) has reached its target position 

after two sample periods. If an nth order system reaches its 
target position in, at most, nth sampling instants, then this 

is called a `dead-beat response'; a controller that achieves 
this, such as D(z) above, is called a `dead-beat controller' 
for this system. This is an interesting response, for it is not 
possible to achieve this with a continuous control system. 

At least two dangers are inherent in dead-beat controllers: 

(1) the demanded controller outputs during the process 
may be excessive; and 

(2) there may be an oscillation set up which is not detected 
without further analysis. 

In fact, the system is only `dead beat' at the sampling 
instants. Indeed, in the above example, there is an oscillation 
between sampling instants of about 10% of the step value. 
However, theoretically it is possible for a sampled-data sys-
tem to complete a transient of the above nature in finite time. 

13.20 Simulation 

13.20.1 System models 

Regardless of the simulation language to be used, a neces-
sary prerequisite is a description of the system of interest by 
a mathematical model. Some physical systems can be 
described in terms of models that are of the state transition 
type. If such a model exists, then given a value of the system 
variable of interest, e.g. voltage, charge position, displace-
ment, etc., at time t, then the value of the variable (state) at 
some future time t ��t can be predicted. The prediction of 
the variable of interest (state variable) x(t) at time t ��t, 
given a state transition model S, can be expressed by the 
state equation: 

x�t ��t� � S�x�t�; t;�t� �13:5�(
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Equation (13.5) shows that the future state is a function of 
the current state x(t) at the current time t and the time incre-
ment �t. Thus, once the model is known, from either empir-
ical or theoretical considerations, Equation (13.5), given an 
initial condition (value), allows for the recursive computation 
of x(t) for any number of future steps in time. For an initial 
value of the state variable x� � x�t1� at time t1, then 

x�t1 ��t� � S�x�; t1;�t�(
then letting t2 � t1 ��t, Equation (13.5) for the next time 
step �t, becomes 

x�t2 ��t� � S�x�t2�; t2 ;�t�(
Obviously, this operation is continued until the calculation 
of the state variable has been performed for the total time 
period of interest. 

Systems of interest will clearly not be characterised only 
by a single state variable but by several state variables. 
Figure 13.37 is a schematic representation of a multi-
variable system that has r inputs, n states and m outputs. 

In general, the simulation will involve calculation of all of  
the state variables, even though the response of only a 
selected number of output variables is of interest. For 
many systems, the output variables may well exhibit a 
simple one-to-one correspondence to the state variables. As 
shown by the representation in Figure 13.37, the values of 
the state variables depend on the inputs to the system. For a 
single interval, between the k and k � 1 time instants, the 
state equations for the n state variable system for a change 
in the jth input (j � r)uj (t) is written as 

x1�tk ��t� � S1�x1�tk�; uj �tk�; tk;�t�(
x2�tk ��t� � S2�x2�tk�; uj �tk�; tk;�t�(

�13:6�(. . . . . . 

xn�tk ��t� � Sn�xn�tk�; uj �tk�; tk;�t�(
The above system of equations, a collection of difference 
equations, would be used to predict the state variables x1, 
x2,  . . .  ,  xn at time intervals of �t from the initial time t0 
until the total time duration of interest T�t0 �K �t. For 
engineering systems, the dependent variable will generally 
be a continuous variable. In this case the system description 
will be in terms of a differential equation of the form 

dx=dt � g�x; t� �13:7�(
Recalling basic calculus for a small time increment, the left-
hand side of Equation (13.7) can be expressed as 

Figure 13.37 Schematic representation of a multi-variable system 
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x�t ��t� � x�t�(
lim 
�t!0 �t 

so, for a small time increment �t, Equation (13.7) can be 
written as 

x�t ��t� � x�t� � �g�x; t���t 

or �13:8�(
x�t ��t� � G�x�t�; t;�t��(

Equation (13.8) is a form of Equation (13.5), so for a 
small time increment, a first-order ordinary differential 
equation can be approximated by a state transition repre-
sentation. 

It thus follows from the preceding discussion that, in 
digital continuous system simulation, the principal numerical 
task is the approximate integration of Equation (13.7). 
For a small time increment DT, the integration step size, 
the computation involves the evaluation of the difference 
equation 

x�t �DT � � x�t� � �g�xt��DT � �13:9a�(
which can be written explicitly as �tk�1 

x�tk�1� � x�tk� � ( g�x�tk �; tk�DT � �13:9b�(
tk 

where DT � tk � 1 � tk. The calculation starts with a known 
value of the initial state x(0) at time t0 and proceeds succes-
sively to evaluate x(t1), x(t2), etc. The computation involves 
successive computation of x(tk � 1) by alternating calcula-
tion of the derivative g[x(tk),tk] followed by integration to 
compute x(tk � 1) at time tk � 1 � tk �DT. 

Obviously, most physical systems will be described by 
second or higher order ordinary differential equations so 
the higher order equation must be re-expressed in terms of 
a group of first-order ordinary differential equations 
by introducing state variables. For an nth order equation, � � 
dn dn�1z dz d2 z z � f z;

dt 
;&
dt2 
� � � (

dtn�1 
; t �13:10�(

dtn 

the approach involves the introduction of new variables as 
state variables to yield the following first-order differential 
equations 

dx1 � x2
dt

dx2
� x3
dt

dx3
� x4
dt �13:11�(
. . . 

dxn�1 � xn
dt


dxn
� f �x1;x2 ;x3; . . . ;xn; t�(
dt 

It should be noted that this equation can be expressed in 
shorthand notation as a vector-matrix differential equation. 
In an analogous manner, Equation (13.6) can be expressed 
as a vector different equation. There is no unique approach 
to the selection of state variables for system representation, 
but for many systems the choice of state variables will be 
obvious. In electric circuit problems, capacitor voltages 
and inductor currents would be logical choices, as would 
position, velocity and acceleration for mechanical systems. 
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13.20.2 Integration schemes 

The simple integration step, embodied by the first-order 
Euler form in Equation (13.9a) only provides a satisfactory 
approximation of the solution of the differential equation, 
within specified error limits, for a very small integration 
step size DT. Since the small integration interval leads to 
substantial computing effort and to round-off error accu-
mulation, all digital simulation languages use improved 
integration schemes. Despite the wide variety of different 
integration schemes that are available in the many different 
simulation languages, the calculational approach can be 
categorised into two groups. The types of algorithm are: 

(1)	 Multi-step formulae In such algorithms, the value of 
x(t �DT) is not calculated by the simple linear extra-
polation of Equation (13.9a). Rather than use only x(t) 
and one derivative value, the algorithms use a polynomial 
approximation based on past values of x(t) and 
g[x(t),t], that is at times t �DT, t � 2DT, etc. 

(2)	 Runge±Kutta formulae In Runge±Kutta type algorithms, 
the derivative value used for the calculation of 
x(t �DT ) is not the point value at time t. Instead, two 
or more approximate derivative values in the interval t, 
t �DT are calculated and then a weighted average of 
these derivative values is used instead of a single value 
of the derivative to compute x(t �DT). 

13.20.3 Organisation of problem input 

Most simulation language input is structured into three 
separate sections, although in some programs the statement 
can be used with limited sectioning of the program. A typical 
structure and the type of statements, functions or parts of  
the simulation program that appear are as follows. 

(1)	 Initialisation 
Problem documentation (e.g. name, date, etc.). 
Initial conditions for state variables. 
Parameter values (problem variables that may not be 
constant, problem time, integration order, integration 
step size, etc.). 
Problem constants. 

(2)	 Dynamic 
Derivative statements. 
Integration statements (including any control para-
meters not given in the initialisation section). 

(3)	 Terminal 
Conditional statements (e.g. total time, variable(s), 
value(s), etc.). 
Multiple run parameters. 
Output (print/plot/display) option(s). 
Output format (e.g. designation of independent 
variable; increment for independent variable; dependent 
variable(s) to be output; maximum and minimum 
values of variable(s); or automatic scaling; total number 
of points for the independent variable or total length 
of time). 

It should be understood that the specific form of the state-
ments within each section is not exactly the same for all 
digital simulation languages. However, from the continuous 
system modelling package (CSMP) simulation programs 
presented in the next section, with the aid of the appropriate 
language manual, there should be no difficulty in formulat-
ing a simulation program using any continuous system 
simulation language (CSSL)-type digital simulation program. 

13.20.4 Illustrative example 

Simulation programs are presented, using the CSMP 
language, that would be suitable for investigating system 
dynamic behaviour. The system model, although relatively 
simple in nature, is typical of those used for system 
representation. 

13.20.4.1 Example 

Frequently, it will be found that system dynamic behaviour 
can be described by a differential equation of the form 

yn � a1y n�1 � a2 y
n�2 � an�1y 1 � any �13:12�(� b0r m � b1r m�1 � bm�1r 1 � bmr 

where 

dny dmrn y �( and r m �(
dtn dtm 

Use of CSMP for studying the dynamic behaviour of  
a system described by a high-order differential equation is 
illustrated here using a simulation program for the differen-
tial equation 

y 3 � 2:5y 2 � 3:4y 1 � 0:8y � 7:3r	 �13:13�(
with the initial conditions 

2 y �0� � 0; y 1 �0� � �4:2; y 0 � 2:5 

Development of the simulation program follows logically 
by rewriting Equation (13.13) as 

d3 y d2 y dy� �2:5 � 3:4 � 0:8y � 7:3r �13:14�(
dt3 dt2 dt � � 
d2 y� dy� � � 
dt2 

t�0 

�( 0; 
dt t�0 

��4:2; yj � 2:5 � � t�0 

A block diagram showing the successive integrations to be 
solved for the dependent variable y is given in Figure 13.38. 
As can be seen from the labelling on the diagram, the output 
of the integration blocks is successive derivative values and 

Figure 13.38 CSMP block diagram for a third-order differential 
equation 
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Figure 13.39 Simulation program for studying the dynamic behaviour 
of a system described by a third-order differential equation 

the dependent variable. In fact, the output of each integra-
tion block is a state variable. This becomes obvious by intro-
ducing new variables, x1, x2, x3 defined as: 

x1 � y 

dx1 � x2
dt 
dx2 � x3
dt 

which allows Equation (13.14) to be expressed as 

dx1 � x2 �13:15�(
dt 

dx2 � x3
dt 
dx3 � �2:5x3 � 3:4x2 � 0:8x1 � 7:3r 
dt 

with the initial conditions 

x3�0� � 0; x2�0� � �4:2; x1�0� � 2:5 

A program for solving equation (13.15) is given in Figure 
13.39. Examination of the program shows that the value of  
the forcing function r is not constant but varies with time. 
The variation is provided using the quadratic interpolation 
function, NLFGEN. Total simulation time is set for 6 min 
with the interval for tabular output specified as 0.2 min. The 
time unit is determined by the problem parameters. It is to 
be noted that the program does not include any specifica-
tion for the method of integration. The CSMP language 
does not require that a method of integration be given, but 
a particular method may be specified. If a method is not 
given, then by default the variable step size fourth-order 
Runge±Kutta method is used for calculation. The initial 
step size, by default, is taken as 1/16 of the PRDEL (or 
OUTDEL) value. Minimum step size can be limited by 

giving a value for DELMIN as part of the TIMER state-
ment. If a DELMIN value is not given then, by default, the 
minimum step size is FINTIM � 10�7. 

13.21 Multivariable control 

Classical process control analysis is concerned with single 
loops having a single setpoint, single actuator and a single 
controlled variable. Unfortunately, in practice, plant vari-
ables often interact, leading to interaction between control 
loops. A typical interaction is shown on Figure 13.40, where 
a single combustion air fan feeds several burners in a multi-
zone furnace. An increase in air flow, via V1 say to raise the 
temperature in zone 1, will lead to a reduction in the duct 
air pressure Pd, and a fall in air flow to the other zones. This 
will lead to a small fall in temperature in the other zones 
which will cause their temperature controllers to call for 
increased air flow which affects the duct air pressure again. 
The temperature control loops interact via the air valves 
and the duct air pressure. 

Where interaction between variables is encountered an 
attempt should always be made to remove the source of 
the interaction, as this leads to a simpler, more robust, 
system. In Figure 13.40, for example, the interaction could 
be reduced significantly by adding a pressure control loop 
which maintains duct pressure by using a VF to set the 
speed of the combustion airfan. Often, however, the inter-
action is inherent and cannot by removed. 

K

Figure 13.41 is a general representation of two interacting 
control loops. The blocks C1 and C2 represent the controllers 
comparing setpoint R with process variable V to give a 
controller output U. The blocks Kab represent the transfer 
function relating variable a to controller output b. Blocks  K11 
and K12 are the normal forward control path, with blocks 

21 and K12 representing the interaction between the loops. 
The process gain of process 1 can be defined as �V1/�U2 

where � denotes small change. This process gain can be 
measured with loop 2 in open loop (i.e. U2 fixed) or loop 2 in 
closed loop control (i.e. V2 fixed) we can thus observe two gains 

�V1
K2OL �( for loop 2 open loop 

�U1 

and 

�V1
K2CL �( for loop 2 closed loop 

�U1 

The gains will, of course vary with frequency and have 
magnitude and phase shift components. We can now define 
a relative gain �& for loop 1 

K2OL 
�& �(

K2CL 

Figure 13.40 A typical example of interaction between variables in multi-variable control. The air flows interact via changes in the duct air pressure 
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Figure 13.41 General representation of interacting loops 

If � is unity, changing from manual to auto in loop 2 does 
not affect loop 1, and there is no interaction between the 
loops. 

If �<1, the interaction will apparently increase process 1 
gain when loop 2 is switched to automatic. If �>1, process 
1 gain will apparently be decreased when loop 2 is in 
automatic. 

This apparent change in gain can be seen with loop 2 in 
manual, U2 is fixed, so K2OL is simply K11. To find K2CL we 
must consider what happens when loop 2 effectively shunts 
K11. We have 

V1 �( K11U1 �( K12U2 �13:16�(
and 

V2 �( K22U2 �( K21U1 �13:17�(
Re-arranging Equation 13.17 gives 

U2 �( V2 �( K21U1 

K22 

which can be substituted in Equation 13.16 giving 

V1 �( K11U1 �( K12 

K22 
�V2 �( K21U1�(

The process 1 gain with loop 2 in auto is 

dV1
K2CL �(

dU1 

K11K22 �( K12K21�(
K22 

The relative gain, � , is  

K2OL 
� �(

K2CL 

1 �

1 �( K12K21 =K11K22


It should be remembered that the gains Kab are dynamic 
functions, so � will vary with frequency. 

The term (K12K21/K11K22 ) is the ratio between the inter-
action and forward gains. This should be in the range 0 to 1. 
If the term is greater than unity, the interactions have more 
effect than the supposed process, and the process variables 
are being manipulated by the wrong actuators! 

It is possible to determine the range of � from the rela-
tionship (K12K21/K11K22). If this is positive, � will be greater 
than unity, and loop 1 process gain will decrease when 
loop 2 is switched to auto. This will occur if there is an even 
number of Kab blocks with negative sign (0, 2 or 4). If the 
relationship is negative, � will be less than unity and loop 1 
process gain will increase when loop 2 is closed. This occurs 
if there is an odd number of blocks with negative sign 
(1 or 3). 

The combustion air flow system of Figure 13.40 is 
redrawn on Figure 13.42(a). Increasing U1 obviously 
decreases V2, and increasing U2 similarly decreases V1. The 
interaction block diagram thus has the signs of Figure 
13.42(b). There are two negative blocks, so �& is greater 
than unity. 

If �& is greater than unity, the interaction can be con-
sidered benign as the reduced process gain will tend to increase 
the loop stability (albeit at the expense of response time). 
The loops can be tuned individually in the knowledge that 
they will remain stable with all loops in automatic control. 

If � is in the range 0 < � < 1, care must be taken as it is 
possible for loops to be individually stable but collectively 
unstable requiring a reduction in controller gains to main-
tain stability. The closer � gets to zero, the greater the inter-
action and the more de-gaining will be required. 

Figure 13.42 The combustion air system redrawn to show interactions: (a) block diagram; (b) interaction diagram, with two negative blocks the 
interaction decreases the apparent process gain and the interaction is benign 
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The calculation of dynamic interaction is difficult, even 
for the two variable case.With more interacting variables, 
the analysis becomes exceedingly complex and computer 
solutions are best used. Ideally, though, interactions once 
identified, should be removed wherever possible. 

13.22 Dealing with non-linear elements 

13.22.1 Introduction 

All systems are non linear to some degree. Valves have non 
linear transfer functions, actuators often have a limited velo-
city of travel and saturation is possible in every component. 
A controller output is limited to the range 4±20 mA, say, and 
a transducer has only a restricted measurement range. 

One of the beneficial effects of closed loop control is the 
reduced effect of non linearities. The majority of non linear-
ities are therefore simply lived with, and their effect on 
system performance is negligible. Occasionally, however, a 
non linear element can dominate a system and in these cases 
its effect must be studied. 

Some non linear elements can be linearised with a suitable 
compensation circuit. Differential pressure flow meters have 
an output which is proportional to the square of flow. 
Following a non linear differential pressure flow transducer 
with a non linear square root extractor gives a linear flow 
measurement system. 

Cascade control can also be used around a non linear 
element to linearise its performance as seen by the outer 
loop. Butterfly valves are notoriously non linear. They 
have an S shaped flow/position characteristic, suffer from 
backlash in the linkages and are often severely velocity lim-
ited. Enclosing a butterfly valve within a cascade flow loop, 
for example, will make the severely non linear flow control 
valve appear as a simple linear first order lag to the rest of 
the system. 

There are two basic methods of analysing the behaviour 
of systems with non linear elements. It is also possible, of  
course, to write computer simulation programs and often 
this is the only practical way of analysing complex non 
linearities. 

13.22.2 The describing function 

If a non linear element is driven by a sine wave, its output 
will probably not be sinusoidal, but it will be periodic with 
the same frequency as the input, but of differing shape and 
possibly shifted in phase as shown on Figure 13.43. Often 
the shape and phase shift are related to the amplitude of the 
driving signal. 

Fourier analysis is a technique that allows the frequency 
spectrum of any periodic waveform to be calculated. A simple 
pulse can be considered to be composed of an infinite number 
of sine waves. 

The non linear output signals of Figure 13.43 could 
therefore be represented as a frequency spectrum, obtained 
from Fourier analysis. This is, however, unnecessarily com-
plicated. Process control is generally concerned with only 
dominant effects, and as such it is only necessary to con-
sider the fundamental of the spectrum. We can therefore 
represent a non linear function by its gain and phase shift 
at the fundamental frequency. This is known as the describ-
ing function, and will probably be frequency and amplitude 
dependant. 

Figure 13.44 shows a very crude bang/bang servo system 
used to control level in a header tank. The level is sensed by 

a capacitive probe which energises a relay when a nominal 
depth of probe is submerged. The relay energises a solenoid 
which applies pneumatic pressure to open a flow valve. This 
system is represented by Figure 13.45. 

The level sensor can be considered to be a level transducer 
giving a 0±10 V signal over a 0.3 m range. The signal is filtered 
with a 2 sec time constant to overcome noise from splashing, 
ripples etc. The level transducer output is compared with the 
voltage from a setpoint control and the error signal ener-
gises or de-energises the relay. We shall assume no hysteresis 
for simplicity although this obviously would be desirable in a 
real system. 

The relay drives a solenoid assumed to have a small delay 
in operation which applies 15 psi to an instrument air pipe 
to open the valve. The pneumatic signal takes a finite time 
to travel down the pipe, so the solenoid valve and piping are 
considered as a 0.5 sec transit delay. The valve actuator 
turns on a flow of 150 m3 =min for an applied pressure of 
15 psi. We shall assume it is linear for other applied pres-
sures. The actuator/valve along with the inertia of the 
water in the pipe appear as a first order lag of 4 sec time 
constant. The tank itself appears as an integrator from 
flow to level. 

This system is dominated by the non linear nature of the 
level probe and the solenoid. The rest of the system can be 
considered linear if we combine the level comparator, relay 
and solenoid into a single element which switches 0 to 15 psi 
according to the sign of the error signal (15 psi for negative 
error, i.e. low level). 

This non linear element will therefore have the response 
of Figure 13.46. when driven with a sinusoidal error signal. 
The output will have a peak to peak amplitude of 15 psi 
regardless of the error magnitude. 

From Fourier analysis, the fundamental component of the 
output signal is a sine wave with amplitude 4 � 7.5/�& psi 
as shown. The phase shift is zero at all frequencies. The non 
linear element of the comparator/relay/solenoid can thus be 
considered as an amplifier whose gain varies with the ampli-
tude of the input signal. 

For a 1 V amplitude error signal the gain is 

�4 � 7:5�=��&� 1� � 9:55 

For a 2 V amplitude error signal the gain is 

�4 � 7:5�=��&� 2� � 4:78 

In general, for an E volt error signal the gain is 

�4 � 7:5�=��&� E� � 9:55=E �13:18�(
Figure 13.47 is a Nichols chart for the linear parts of the 

system. This has 180�( phase shift for !� 0.3 rads/sec, so if it 
was controlled by a proportional controller, it would oscil-
late at 0.3 rads/sec if the controller gain was sufficiently 
high. The linear system gain at this frequency is �7dB, so 
a proportional controller gain of 7dB would just sustain 
continuous oscillation. 

Let us now return to our non linear level switch. This has a 
gain which varies inversely with error amplitude. If we are, 
for some reason, experiencing a large sinusoidal error signal 
the gain will be low. If we have a small sinusoidal error 
signal the gain will be high. 

Intuitively we know the system of Figure 13.44 will oscil-
late. The non linear element will add just sufficient gain to 
make the Nichols chart of Figure 13.47 pass through the 
0 dB/�180�( origin. Self sustaining oscillations will result at 
0.3 rads/sec. If these increase in amplitude for some reason, 
the gain will decrease causing them to decay again. If they 
cease, the gain will increase until oscillations recommence. 
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Figure 13.43 Common non-linearities 

Figure 13.44 Bang-bang level control system 
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Figure 13.45 Block diagram of bang-bang level control system 

Figure 13.46 Action of solenoid valve in level control system 

The system stabilises with continuous constant amplitude 
oscillation. 

To achieve this the non linear element must contribute 
7 dB gain, or a linear gain of 2.24. From Equation 13.18 
above, the gain is 9.55/E where E is the error amplitude. 
The required gain is thus given by an error amplitude of 

Figure 13.47 Nichols chart for linear portion of level control system 

9.55/2.24 �( 4.26 V. This corresponds to an oscillation in 
level of 0.426 m. 

The system will thus oscillate about the set level with an 
amplitude of 0.4 m (the assumptions and approximations 
give more significant figures a relevance they do not merit) 
and an angular frequency of 0.4 rads/sec (period fraction-
ally over 20 s). 

There is a hidden assumption in the above analysis that 
the outgoing flow is exactly half the available ingoing flow 
to give equal mark/space ratio at the valve. Other flow rates 
will give responses similar to Figure 13.48, exhibiting a form 
of pulse width modulation. The relatively simple analysis 
however has told us that our level control system will sus-
tain constant oscillation with an amplitude of around half a 
metre and a period of about 20 sec at nominal flow. 

Similar techniques can be applied to other non linearities; 
a limiter, shown on Figure 13.49(a) and  (b), for example, will 
have unity gain for input amplitudes less than the limiting 
level. For increasing amplitude the apparent gain will 
decrease. The describing function when limiting occurs has 
a gain dependent on the ratio between the input signal 
amplitude and the limiting value as plotted on Figure 
13.49(c). There is no phase shift between input and output. 

Hysteresis, shown on Figure 13.50, introduces a phase 
shift, and a flat top to the output waveform. This is not the 
same waveform as the limiter; the top is simply levelled off 
at 2a below the peak where a is half the dead zone width. If  
the input amplitude is large compared to the dead zone, the 
gain is unity and the phase shift can be approximated by 

�& �( sin�1 �a=Vi �(
As the input amplitude decreases, the gain increases and 
becomes zero when the input peak to peak amplitude is 
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Figure 13.48 Response of level control system to changes in flow 

Figure 13.49 The limiter circuit: (a) relationship between input and output; (b) effect of limiting on a sine wave input signal; (c) `Gain' of a limiter 
related to the input signal amplitude 

less than the dead zone width. The exact relationship is 
complex, but is shown on Figure 13.50(c) and (d). 

Non linear elements generally have gains and phase shift 
which increase or decrease with input amplitude (usually a 
representation of the error signal). Figure 13.51 illustrates 
the two gain cases. For a loop gain of unity, constant oscil-
lations will result. For loop gains greater than unity, oscilla-
tions will increase in amplitude, for loop gain less than unity 
oscillations will decay. 

In Figure 13.51(a), the gain falls off with increasing 
amplitude. The system thus tends to approach point X as 
large oscillations will decay and small oscillations increase. 
The system will oscillate at whatever gain gives unity loop 
gain. This is called limit cycling. Most non linearities (bang-
bang servo, saturation etc.) are of this form. 

Where loop gain increases with amplitude as Figure 
13.51(b), decreasing gain gives increasing damping as the 
amplitude decreases, so oscillations will quickly die away. 
This response is sometimes deliberately introduced into level 
controls. If, however, the system is provoked beyond Y by a 
disturbance, the oscillation will rapidly increase in amplitude 
and control will be lost. 

13.22.3 State space and the phase plane 

Figure 13.52(a) shows a simple position control system. The 
position is sensed by a potentiometer, and compared with a 
setpoint from potentiometer RV1. The resulting error signal 
is compared with an error `window' by comparators C1, C2. 
Preset RV2 sets the deadband, i.e. the width of the window. 
The comparators energise relays RLF and RLR which drive 
the load to the forward and reverse respectively. 

Initially, we shall analyse the system with RV2 set to zero, 
i.e. no deadband. This has the block diagram of Figure 
13.52(b), with a first order lag of time constant T arising 
from the inertia of the system, and the integral action con-
verting motor velocity to load position. 

The system is thus represented by 

�K 
x �( �13:19�(

s�1 �( sT �(

where K represents the acceleration resulting from the 
motor torque and inertia with the sign of K indicating the 
sign of the error. This has the solution 
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Figure 13.50 The effect of hysteresis: (a) relationship between input and output signals; (b) the effect of hysteresis on a sine wave input signal; 
(c) the relationship between phase shift and signal amplitude; (d) the relationship between `gain' and signal amplitude 

Figure 13.51 Possible relationships between gain and signal amplitude: (a) gain decreases with increasing amplitude; (b) gain increases with 
increasing amplitude 

�t=T 
x �( x0 � TK � TV0 � Kt � T�K � V0�e �13:20�(
where x0 and V0 respectively represent the initial position 
and velocity. 

Differentiating gives the velocity, V 

V �( K � �K � V0�e �t=T �13:21�(
Equations 13.20 and 13.21 fully describe the behaviour of 
the system. These can be plotted graphically as Figure 13.53 
with velocity plotted against position for positive K for 
various times from t � 0. Each curve represents a different 
starting condition; curve D, for example, starts at x0 ��5 
and v0 ��2 

In each case, the curve ends towards v � 2 units/sec as t 
gets large. The family of curves have an identical shape, 
and the different starting conditions simply represent a 
horizontal shift of the curve. 

A similar family of curves can be drawn for negative 
values of K. These are sketched on Figure 13.54. In this 
case, the velocity tends towards V ��2 units/sec. 

Given these curves, we can plot the response of the 
system. Let us assume that the system is stationary at x ��5, 
and the setpoint is switched to �5. The subsequent 
behaviour is shown on Figure 13.55. The system starts by 
initially following the curve passing through x ��5, V � 0 
for positive K, crossing x � 0 with a velocity 1.5 units/sec, 
reaching the setpoint at point X with a velocity of 
1.76 units/sec. It cannot stop instantly however, so it over-
shoots. 

At the instant the overshoot occurs K switches sign. The 
system now has a velocity of �1.76, with K negative, so it 
follows the corresponding curve of Figure 13.54 from point 
X to point Y. It can be seen that an overshoot to x � 7 
occurs. At point Y, another overshoot occurs and K switches 
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Figure 13.52 A non-linear position control system: (a) system diagram; (b) block representation 

Figure 13.53 Relationship between position and velocity for positive values of K for various initial conditions 

back positive. The system now follows the curve to Z with RLR for error voltages above �1 unit. There is thus a dead-
an undershoot of x �( 4.1. At Z another overshoot occurs and band 2 units wide around the setpoint. 
the system spirals inwards as shown. The predicted step Figure 13.57(b) shows the effect of this deadband. We 
response is shown on Figure 13.56. will assume initial values of x0 �( 0, v0 �( 0 when we switch 

In Figure 13.57(a), the deadband control (RV2 on the ear- the setpoint to x �( 5. The system accelerates to point U 
lier Figure 13.52) has been adjusted to energise RLF (x �( 4, v �( 1.40) at which point RL1 de-energises. The sys-
for error voltages more negative than �1 unit and energise tem loses speed (K �( 0) until point V, where the position 
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Figure 13.54 Relationship between position and velocity for negative values of K for various initial conditions 

Figure 13.55 System behaviour following change of setpoint from 
x ��5 to  x ��5 

passes out of the deadband and RLR energises. The system 
reverses, and re-enters the deadband at point W, where RLF 
de-energises. An undershoot then occurs (X to Y ) where the 
deadband is entered for the last time, coming to rest at point 
Z (x � 4.75, v � 0). 

The position x and velocity dx/dt completely describe 
the system and are known as state variables. A linear system 
can be represented as a set of first order differential equations 
relating the various state variables. For a second order 
system there are two state variables, for higher order systems 
there will be more. 

For the system described by Equation 13.19, we can 
denote the state variables by x (position) and v (velocity). 
For a driving function K, we can represent the system by 
Figure 13.58 which is called a state space model. This 

Figure 13.56 Predicted step response following change of setpoint 

describes the position control system by the two first order 
differential equations. 

dv 
T � K � x 

dt 
and 

dx 
v �(

dt 
Figure 13.56 and Figure 13.57 plot velocity against position, 
and as such are plots relating state variables. For two state 
variables (from a second order system) the plot is known as 
a phase plane. For higher order systems, a multi-dimensional 
plot, called state space, is required. Plots such as Figure 13.53 
and Figure 13.54 which show a family of possible curves are 
called phase plane portraits. 
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Figure 13.57 System with deadband and friction: (a) deadband response; (b) position/velocity curve for setpoint change from x �(0 to  x �( 5. 
Note system does not attain the setpoint 

Figure 13.58 State variables for position control system 

Similar phase planes can be drawn for other non linear-
ities such as saturation, hysteresis etc. Various patterns 
emerge, which are summarised on Figure 13.59. The system 
behaviour can be deduced from the shape of the phase 
trajectory. 

In a linear closed loop system stability is generally 
increased by adding derivative action. In a position control 
system this is equivalent to adding velocity (dx/dt) feed-
back. The behaviour of a non linear system can also be 
improved by velocity feedback. In Figure 13.60(a) velocity 
feedback has been added to our simple Bang/Bang position 
servo. 

The switching point now occurs where 

SP �( x �( Lv �( 0 

or 

1 
v � �SP �( x�(

L 
This is a straight line of slope �1/L, passing through 

x �(SP, v �( 0 on the phase plane. Note that L has the units 
of time. The line is called the switching line, and advances the 
changeover as shown on Figure 13.60(b), thereby reducing 
the overshoot. Too much velocity feedback as Figure 13.60(c) 

simulates an overdamped system as the trajectory runs to the 
setpoint down the switching line. 

13.23 Disturbances 

13.23.1 Introduction 

A closed loop control system has to deal with the malign 
effects of outside disturbances. A level control system, for 
example, has to handle varying throughput, or a gas fired 
furnace may have to cope with changes in gas supply pres-
sure. Although disturbances can enter a plant at any point, 
it is usual to consider disturbances at two points; supply 
disturbances at the input to the plant and load/demand dis-
turbances at the point of measurement as shown on 
Figure 13.61(a). 

The closed loop block diagram can be modified to 
include disturbances as shown on Figure 13.61(b). A similar 
block diagram could be drawn for load disturbances or dis-
turbances entering at any point by subdividing the plant 
block. By normal analysis we have 

CPSp PD 
V � �( �13:22�(

1 �(HCP 1 �(HCP 
Equation 13.22 has two components; the first relates the 
plant output to the setpoint and is the normal closed loop 
transfer function GH/(1 �GH). The product of controller 
and plant transfer function C.P. is the forward gain G. The 
second term relates the performance of the plant to distur-
bance signals. In general, closed loop control reduces the 
effect of disturbances. If the plant was run open loop, the 
effect of the disturbances on the output would be simply 

V �( PD 
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From Equation 13.22 with closed loop control, the effect of 
the disturbance is 

PD 
V �(

1 �(HCP 
i.e. it is reduced providing the magnitude of (1 �HCP) is  
greater than unity. If the magnitude of (1 �HCP) becomes 
less than unity over some range of frequencies, closed loop 
control will magnify the effect of disturbances in that 
frequency range. It is important, therefore, to have 
some knowledge of the frequency spectra of expected 
disturbances. 

13.23.2 Cascade control 

Closed loop control gives increased performance over open 
loop control, so it would seem logical to expect benefits 
from adding an inner control loop around plant items that 
are degrading overall performance. Figure 13.62 shows a 
typical example, here the output of the outer loop controller 
becomes the setpoint for the inner controller. Any problems 

Disturbances 13/43 

in the inner loop (disturbances, non linearities, phase lag 
etc.) will be handled by the inner controller, thereby 
improving the overall performance of the outer loop. This 
arrangement is known as cascade control. 

To apply cascade control, there must obviously be some 
intermediate variable that can be measured (PVi on 
Figure 13.62) and some actuation point that can be used to 
control it. 

Cascade control brings several benefits. The secondary 
controller will deal with disturbances before they can affect 
the outer loop. Phase shift within the inner loop is reduced, 
leading to increased stability and speed of response in the 
outer loop. Devices with inherent integral action (such as a 
motorised valve) introduce an inherent �90�( integrator 
phase lag. This can be removed by adding a valve positioner 
in cascade. Cascade control will also reduce the effect of 
non linearities (e.g. non linear gain, backlash etc.) in the 
inner loop. 

There are a few precautions that need to be taken, how-
ever. The analysis so far ignores the fact that components 
saturate and stability problems can arise when the inner 
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Figure 13.60 Addition of velocity feedback to a non-linear system: (a) block diagram of velocity feedback; (b) system behaviour on velocity/ 
position curve; (c) overdamped system follows the switching line 

Figure 13.61 The effect of disturbances: (a) points of entry for 
disturbances; (b) block diagram of disturbances 

loop saturates. This can be overcome by limiting the 
demands that the outer loop controller can place on the 
inner loop (i.e. ensuring the outer loop controller saturates 
first) or by providing a signal from the inner to the outer 
controller which inhibits the outer integral term when the 
inner loop is saturated. 

The application of cascade control requires an intermedi-
ate variable and control action point, and should include, if 
possible, the plant item with the shortest time constant. In 
general, high gain proportional only control will often suf-
fice for the inner loop, any offset is of little concern as it will 
be removed by the outer controller. For stability, the inner 
loop must always be faster than the outer loop. 

Tuning a system with cascade control requires a method-
ical approach. The inner loop must be tuned first with the 
outer loop steady in manual control. Once the inner loop is 
tuned satisfactorily, the outer loop can be tuned as normal. 
A cascade system, once tuned, should be observed to ensure 
that the inner loop does not saturate, which can lead to 
instability or excessive overshoot on the outer loop. If 
saturation is observed, limits must be placed on the output 
of the outer loop controller, or a signal provided to prevent 
integral windup as described later in Section 13.27.6 

13.23.3 Feedforward 

Cascade control can reduce the effect of disturbances occur-
ring early in the forward loop, but generally cannot deal 
with load/demand disturbances which occur close to, or 
affect directly the process variable as there is no intermedi-
ate variable or accessible control point. 

Disturbances directly affecting the process variable must 
produce an error before the controller can react. Inevitably, 
therefore, the output signal will suffer, with the speed of 
recovery being determined by the loop response. Plants 
which are difficult to control tend to have low gains and 
long integral times for stability, and hence have a slow 
response. Such plants are prone to error from disturbances. 
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Figure 13.62 A system with cascade control 

!

In general a closed loop system can be considered to 
behave as a second order system, with a natural frequency 
!n, and a damping factor. At frequencies above !n, the 
closed loop gain falls off rapidly (at 12 dB/octave). 
Disturbances occurring at a frequency much above 2!n 
will be uncorrected. If the closed loop damping factor is 
less the unity (representing an underdamped system), the 
effect of disturbances with frequency components around 

n can be magnified. 
Figure 13.63(a) shows a system being affected by a dis-

turbance. Cascade control cannot be applied because there 
is no intermediate variable between the point of entry and 
the process variable. If the disturbance can be measured, 
and its effect known, (even approximately), a correcting 
signal can be added to the controller output signal to com-
pensate for the disturbance as shown on Figure 13.63(b). 
This is known as feedforward control. 

This correcting signal, arriving by blocks H, F, and  P1 
should ideally exactly cancel the original disturbance, both in 
the steady state and dynamically under changing conditions. 
The transfer functions of the transducer H and plant P1 are 
fixed, with F a compensator block designed to match H and P1. 

In general, the compensator block transfer function will be 

1 
F � � (

HP1 

If the plant acts as a simple lag with time constant T 
(i.e. 1/(1 � sT)), the compensator will be a simple lead 
(1 � sT). In many cases a general purpose compensator 
(1 � sTa)/(1 � sTb) is used. 

The feedforward compensation does not have to match 
exactly the plant characteristics; even a rough model will 
give a significant improvement (although a perfect model 
will give perfect control). In most cases a simple compen-
sator will suffice. 

Cascade control can usually deal with supply disturb-
ances and feedforward with load or demand disturbances. 
These neatly complement each other so it is very common 
to find a system where feedforward modifies the setpoint for 
the inner cascade loop. 

13.24 Ratio control 

13.24.1 Introduction 

It is a common requirement for two flows to be kept in 
precise ratio to each other; gas/oil and air in combustion 
control, or reagants being fed to a chemical reactor are 
typical examples. 

Figure 13.63 Effect of a disturbance reduced by feedforward: (a) a system to which cascade control cannot be applied being subject to a 
disturbance; (b) correcting signal derived by measuring the disturbance 
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13.24.2 Slave follow master 

In simple ratio control, one flow is declared to be the master. 
This flow is set to meet higher level requirements such as 
plant throughput or furnace temperature. The second flow 
is a slave and is manipulated to maintain the set flow ratio. 

The controlled variable here is ratio, not flow, so an intui-
tive solution might look similar to Figure 13.64 where the 
actual ratio A/B is calculated by a divider module and used 
as the process variable for a controller which manipulated 
the slave control valve. 

This scheme has a hidden problem. The slave loop 
includes the divider module and hence the term A. The 
loop gain varies directly with the flow A, leading to a slug-
gish response at low flows and possible instability at high 
flow. If the inverse ratio B/A is used as the controller vari-
able the saturation becomes worse as the term 1/A now 
appears in the slave loop giving a loop gain which varies 
inversely with A, becoming very high at low flows. Any 
system based on Figure 13.64 would be impossible to tune 
for anything other than constant flow rates. 

Ratio control systems are often based on Figure 13.65. 
The master flow is multiplied by the ratio to produce the 

setpoint for the slave flow controller. The slave flow thus 
follows the master flow. Note that in the event of failure in 
the master loop (a jammed valve for example) the slave con-
troller will still maintain the correct ratio. 

The slave flow will tend to lag behind the master flow. On 
a gas/air burner, the air flow could be master and the gas 
loop the slave. Such a system would run lean on increasing 
heat and run rich on decreasing heat. To some extent this 
can be overcome by making the master loop slower acting 
than the slave loop, possibly by tuning. 

In a ratio system, a choice has to be made for master and 
slave loops. The first consideration is usually safety. In a 
gas/air burner, for example, air master/gas slave (called gas 
follow air) is usually chosen as most failures in the air loop 
cause the gas to shut down. If there are no safety consider-
ations, the slowest loop should be the master and the fastest 
loop the slave to overcome the lag described above. Since 
`fuel' (in both combustion and chemical terms) is usually the 
smallest flow in a ratio system and consequently has smaller 
valves/actuators, the safety and speed requirement are often 
the same. 

The ratio block is a simple multiplier. If the ratio is simply 
set by an operator this can be a simple potentiometer acting 

Figure 13.64 An intuitive, but incorrect, method of ratio control. The loop gain varies with throughput 

Figure 13.65 Master/slave ratio system with stable loop gains 
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as a voltage divider (for ratios less the unity) or an amplifier 
with variable gain (for ratios greater than unity). In digital 
control systems, of course, it is a simple multiply instruction. 
If the ratio is to be changed remotely (a trim control from 
an automatic sampler on a chemical blending system for 
example) a single quadrant analog multiplier is required. 

Ratio blocks are generally easier to deal with in digital 
systems working in real engineering units. True ratios (an 
air/gas ratio of 10/1 for example) can then be used. In 
analog systems the range of the flow meters needs to be 
considered. Suppose we have a master flow with FSD of 
12 000 l/min, a slave flow of FSD 2000 l/min and a required 
ratio (master/slave) of 10/1. The required setting of R on 
Figure 13.65 would be 0.6. In a well designed plant with cor-
rectly sized pipes, control valves and flow meters, analog 
ratios are usually close to unity. If not, the plant design 
should be examined. 

Problems can arise with ratio systems if the slave loop 
saturates before the master. A typical scenario on a gas follow 
air burner control could go; the temperature loop calls for a 
large increase in heat (because of some outside influence). 
The air valve (master) opens fully, and the gas valve follows 
correctly but cannot match the requested flow. The resulting 
flame is lean and cold (flame temperature falls off rapidly 
with too lean a ratio) and the temperature does not rise. The 
system is now locked with the temperature loop demanding 
more heat and the air/gas loops saturated, delivering full flow 
but no temperature rise. The moral is; the master loop must 
saturate before the slave. If this is not achieved by pipe sizing 
the output of the master controller should be limited. 

13.24.3 Lead lag control 

Slave follow Master is simple, but one side effect is that the 
mixture runs lean for increasing throughput and rich for 

decreasing throughput because the master flow must always 
change first before the slave can follow. There is also a pos-
sible safety implication because a failure of the slave valve 
or controller could lead to a gross error in the actual ratio 
such as the fuel valve wide open and the air valve closed. 

Better performance can be obtained with a system called 
Lead-lag control shown for an air/fuel burner on Figure 
13.66. This uses cross linking and selectors to provide an 
air setpoint which is the highest of the external power 
demand signal or ratio'd fuel flow. The fuel setpoint is the 
lowest of the external power demand or ratio'd air flow. 

This cross linking provides better ratio during changes, 
both air and fuel will change together. There is also higher 
security; a jammed open fuel valve will cause the air valve to 
open to maintain the correct ratio and prevent an explosive 
atmosphere of unburned fuel forming. 

13.25 Transit delays 

13.25.1 Introduction 

Transit delays are a function of speed, time and distance. 
A typical example from the steel industry is the tempering 
process of Figure 13.67 where red hot rolled steel travelling 
at 15 m/sec is quenched by passing beneath high pressure 
water sprays. The recovery temperature, some 50 m 
downstream, is the controlled variable which is measured 
by a pyrometer and used to adjust the water flow control 
valve. There is an obvious transit delay of 50/15 �( 3.3 sec 
in the loop. A transit delay is a simple time shift which is 
independent of frequency. 

Transit delays give an increasing phase shift with rising 
frequency which is de-stabilising. If conventional control-
lers are used significant detuning (low gain, large Ti) is  
necessary to maintain stability. The effect is shown on the 

Figure 13.66 Lead/lag combustion control 
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Figure 13.67 A tempering system dominated by a transit delay 

Nichols charts of Figure 13.68 for a simple system of two first 
order lags controlled by a PI controller. The de-stabilising 
effect of the increasing phase shift can clearly be seen. 
Derivative action, normally a stabilising influence, can 
also adversely affect a loop in which a transit delay is the 
dominant feature. 

13.25.2 The Smith predictor 

The effects of a transit delay can be reduced by the arrange-
ment of Figure 13.69 called a Smith predictor. The plant is 
considered to be an ideal plant followed by a transit delay. 
(This may not be true, but the position of the transit delay, 
before or after the plant, makes no difference to the plant 
behaviour.) The plant and its associated delay are modelled 
as accurately as possible in the controller. 

The controller output, OP, is applied to the plant and to 
the internal controller model. Signal A should thus be the 
same as the notional (and unmeasurable) plant signal X, 
and the signal B should be the same as the measurable con-
trolled variable signal Y. 

The PID controller however, is primarily controlling the 
model, not the plant, via summing junction 1. There are no 
delays in this loop, so the controller can be tuned for tight 
operation. With the model being the only loop, however, 
the plant is being operated in open loop control, and com-
pensation will not be applied for model inaccuracies or out-
side disturbances. 

Signal Y and B are therefore compared by a subtractor to 
give an error signal which encompasses errors from both 
disturbances and the model. These are added to the signal 
A from the plant model to give the feedback signal to the 
PID control block. 

Discrepancies between the plant model and the real plant 
will be compensated for in the outer loop, so exact model-
ling is not necessary. The poorer the model, however, the 
less tight the control that can be applied in the PID block 
as the errors have to be compensated via the plant transit 
delay. 

Smith predictors are usually implemented digitally, ana-
log transit delays being difficult to construct. A digital delay 
line is simply a shift register in which values are shifted one 
place at each sample. 

The Smith predictor is not a panacea for transit delays; it 
still takes the delay time from a setpoint change to a change 
in the process variable, and it still takes the delay time for a 
disturbance to be noted and corrected. The response to 
change, however, is considerably improved. 

Systems with transit delays can benefit greatly from 
feedforward described previously in Section 13.23.3. 
Feedforward used in conjunction with a Smith predictor 
can be a very effective way of handling control systems 
with significant transit delays. 

13.26 Stability 

13.26.1 Introduction 

At first sight it would appear that perfect control can be 
obtained by utilising a large proportional gain, short 
integral time and long derivative time. The system will then 
respond quickly to disturbances, alterations in load and set 
point changes. 

Unfortunately life is not that simple, and in any real life 
system there are limits to the settings of gain Ti and Td 
beyond which uncontrolled oscillations will occur. Like 
many engineering systems, the setting of the controller is a 
compromise between conflicting requirements. 

13.26.2 Definitions and performance criteria 

It is often convenient, (and not too inaccurate), to consider 
that a closed loop system behaves as a second order system, 
with a natural frequency !n and a damping factor �. 

d2 x dx �( 2�!n �( !2 x �( f �t�(
dt2 dt n 

It is then possible to identify five possible performance con-
ditions, shown for a set point change and a disturbance in 
Figure 13.70(a) and (b). 

An unstable system exhibits oscillations of increasing 
amplitude. A marginally stable system will exhibit constant 
amplitude oscillations. An underdamped system will be 
somewhat oscillatory, but the amplitude of the oscillations 
decreases with time and the system is stable. (It is important 
to appreciate that oscillatory does not necessarily imply 
instability). The rate of decay is determined by the damping 
factor. An often used performance criteria is the `quarter 
amplitude damping' of  Figure 13.70(c) which is an under-
damped response with each cycle peak one quarter of the 
amplitude of the previous. For many applications this is an 
adequate, and easily achievable response. 

An overdamped system exhibits no overshoot and a 
sluggish response. A critical system marks the boundary 
between underdamping and overdamping and defines the 
fastest response achievable without overshoot. 

For a simple system the responses of Figure 13.70(a) and 
(b) can be related to the gain setting of a P only controller, 
overdamped corresponding to low gain with increasing gain 
causing the response to become underdamped and even-
tually unstable. 

It is impossible for any system to respond instantly to 
disturbances and changes in set point. Before the adequacy 
of a control system can be assessed, a set of performance 
criteria is usually laid down by production staff. Those 
defined in Figure 13.71 are commonly used. 
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Figure 13.68 The effect of a transit delay on stability: (a) sketch of a Nichols chart for a system comprising a PI controller (K �(5, Ti �(5 s) and two 
first order lags of time constants 5 secs and 2 secs. The system is unconditionally stable; (b) the same system with a one second transit delay. The 
transit delay introduces a phase shift which increases with rising frequency and makes the system unstable 

Figure 13.69 The Smith predictor used to reduce the effect of transit delays 
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Figure 13.70 Various forms of system response: (a) step change in setpoint; (b) step change in load; (c) quarter amplitude damping 

The `rise time' is the time taken for the output to go from 
10% to 90% of its final value, and is a measure of the speed 
of response of the system. The time to achieve 50% of the 
final value is called the `delay time'. This is a function of, 
but not the same as, any transit delays in the system. The 
first overshoot is usually defined as a percentage of the 
corresponding set point change, and is indicative of the 
damping factor achieved by the controller. 

As the time taken for the system to settle completely after a 
change in set point is theoretically infinite, a `settling band', 
`tolerance limit' or `maximum error' is usually defined. The 
settling time is the time taken for the system to enter, and 
remain within, the tolerance limit. Surprisingly an under-
damped system may have a better settling time than a critically 
damped system if the first overshoot is just within the settling 
band. Table 13.2 shows optimum damping factors for various 
settling bands. The settling time is defined in units of 1/!n. 

Table 13.2 

Settling band Optimum `b' Settling time 

20% 0.45 1.80 
15% 0.55 2.00 
10% 0.60 2.30 
5% 0.70 2.80 
2% 0.80 3.50 

The shaded area is the integral of the error and this can also 
be used as an index of performance. Note that for a system 
with a standing offset (as occurs with a P only controller) the 
area under the curve will increase with time and not converge 
to a final value. Stable systems with integral action control 
have error areas that converge to a finite value. The area 
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between the curve and the set point is called the integrated 
absolute error (IAE) and is an accepted performance criterion. 

An alternative criterion is the integral of the square of the 
instantaneous error. This weights large errors more than 
small errors, and is called integrated squared error (ISE). It 
is used for systems where large errors are detrimental, but 
small errors can be tolerated. 

The performance criteria above were developed for a set 
point change. Similar criteria can be developed for disturb-
ances and load changes. 

13.26.3 Methods of stability analysis 

The critical points for stability are open loop unity gain and 
a phase shift of �180�. It is therefore reasonable to give two 
figures of `merit': 

(a) The Gain Margin is the amount by which the open loop 
gain can be increased at the frequency at which the 
phase shift is �180�. It is simply the inverse of the gain 
at this critical frequency, for example if the gain at the 
critical frequency is 0.5, the gain margin is two. 

(b) The Phase Margin is the additional phase shift that can be 
tolerated when the open loop gain is unity. With �140�(
phase shift at unity gain, there is a phase margin of 40�(. 

Sp 
error 

– 
+ 

H 

G 
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For a reasonable, slightly underdamped, closed loop 
response the gain margin should be of the order of 6 ±12 dB 
and the phase margin of the order of 40±65�(. 

Any closed loop control system can be represented by 
Figure 13.72 where G is the combined block transfer func-
tion of the controller and plant and H the transfer function 
of the transducer and feed back components. The output 
will be given by: 

G 
PV �( Sp

1 � GH 
The system will be unstable if the denominator goes to zero 
or reverses in sign, i.e. GH<&��1. This is not as simple a 
relationship as might be first thought, as we are dealing with 
the dynamics of the process. The response of the system 
(gain and phase shift) will vary with frequency; generally 
the gain will fall and the phase shift will rise with increasing 
frequency. A phase shift of 180�( corresponds to multiplying 
a sine wave by �1, so if at some frequency the phase shift is 
180�( and the gain at that frequency is greater than unity the 
system will be unstable. 

There are several methods of representing the gain/phase 
shift relationship, and inferring stability from the plot. Figure 
13.73 is called a Bode diagram and plots the gain (in dB) 
and phase shift on separate graphs. Log-Lin graph paper 

Pv 

Figure 13.72 General block diagram of a closed loop control system 
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Figure 13.73 Gain and phase margins on the Bode diagram 

(e.g. Chartwell 5542) is required. For stability, the gain curve 
must cross the 0 dB axis before the phase shift curve crosses 
the 180�( line. From these two values, the gain margin and the 
phase margin can be read as shown. 

Figure 13.74 is a Nichols chart and plots phase shift against 
gain (in dB). For stability, the 0 dB/ �180�( intersection must 
be to the right of the curve for increasing frequency. Nichols 
charts are plotted on pre-printed graph paper (Chartwell 
7514 for example) which allows the closed loop response to 
be read directly. If for example the curve is inside the closed 
loop 0 dB line damped oscillations will result. The gain and 
phase margins can again be read from the graph. 

The final method is the Nyquist diagram of Figure 13.75. 
This plots gain again phase shift as a polar diagram (gain 
represented by distance from the origin). Chartwell graph 
paper 4001 is suitable. For stability the �180�( point must be 

Figure 13.74 Gain and phase margins on a Nichols chart 

Figure 13.75 Gain and phase margins on a Nyquist diagram 

to the left of the graph for increasing frequency. Gain and 
phase margin can again be read from the graph. 

13.27 Industrial controllers 

13.27.1 Introduction 

The commercial three term controller is the workhorse of 
process control and has evolved to an instrument of great 
versatility. This section describes some of the features of  
practical modern microprocessor based controllers. 

13.27.2 A commercial controller 

The description in this section is based on the 6360 control-
ler manufactured by Eurotherm Process Automation Ltd of 
Worthing, Sussex. 

The controller front panel is the `interface' with the 
operator who may have little or no knowledge of process 
control. The front panel controls should therefore be simple 
to comprehend. Figure 13.76 shows a typical layout. 

The operator can select one of three operating modesÐ 
manual, automatic or remoteÐvia the three push buttons 
labelled M, A, R. Indicators in each push-button show the 
current operating mode. 

In manual mode, the operator has full control over the 
driven plant actuator. The actuator drive signal can be 
ramped up or down by holding in the M button and press-
ing the ~ or . buttons. The actuator position is shown 
digitally on the digital display, whilst the M button is 
depressed and continuously in analog form on the horizon-
tal bargraph. 

In automatic mode the unit behaves as a three term con-
troller with a set point loaded by the operator. The unit is 
scaled into engineering units (i.e. real units such as �C, psi, 
litres/min) as part of the set up procedure so that the oper-
ator is working with real plant variables. The digital display 
shows the set point value when the SP button is depressed 
and the value can be changed with the ~ and . buttons. 



//integras/b&h/Eer/Final_06-09-02/eerc013

Figure 13.76 Front panel operator controls on a typical controller 

The set point is also displayed in bargraph form on the 
right-hand side of the dual vertical bargraph. 

Remote mode is similar to automatic mode except the set 
point is derived from an external signal. This mode is used 
for ratio or cascade loops (see Sections 13.23 and 13.24) and 
batch systems where the setpoint has to follow a predeter-
mined pattern. As before the setpoint is displayed in bar-
graph form and the operator can view, but not change, the 
digital value by depressing the SP button. 

The process variable itself is displayed digitally when no 
push button is depressed, and continually on the left-hand 
bargraph. In automatic or remote modes the height of the 
two left-hand bargraphs should be equal, a very useful 
quick visual check that all is under control. 

Alarm limits, (defined during the controller set up), can 
be applied to the process variable or the error signal. If 
either move outside acceptable limits, the process variable 
bargraph flashes, and a digital output from the controller is 
given for use by an external annunciator audible alarm of 
data logger. 

Figure 13.77 shows a simple block diagram representa-
tion of a controller. 

Input analog signals enter at the left-hand side. Common 
industrial signal standards are 0±10 V, 1±5 V, 0±20 mA and 
4±20 mA. These can be accommodated by two switchable 
ranges 0±10 V and 1±5 V plus suitable burden resistors 
for the current signals (a 250 ohm resistor, for example, 
converts 4±20 mA to 1±5 V). 
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Figure 13.77 Block diagram of a typical controller 

4±20 mA and 0±20 mA signals used on two wire loops 
require a DC power supply somewhere in the loop. A float-
ing 30 V power supply is provided for this purpose. 

Open circuit detection is provided on the main PV input. 
This is essentially a pull up to a high voltage via a high value 
resistor. A comparator signals an open circuit input when 
the voltage rises. Short circuit detection can also be applied 
on the 1±5 V input (the input voltage falling below 1 V). 
Open circuit or short circuit PV is usually required to bring 
up an alarm and trip the controller to manual, with the out-
put signal driven high, held at last value, or driven low 
according to the nature of the plant being controlled. The 
open circuit trip mode is determined by switches as part of 
the set up procedure. 

The PV and remote SP inputs are scaled to engineering 
units and linearised. Common linearisation routines are 
thermocouples, platinum resistance thermometers and square 
root (for flow transducers). A simple adjustable first order 
filter can also be applied to remove process or signal noise. 
The set point for the PID algorithm is selected from the 
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internal set point or the remote set point by the from panel 
auto and remote push button contacts A, R. 

The error signal is obtained by a subtractor (PV and SP 
both being to the same scale as a result of the scaling and 
engineering unit blocks). At this stage two alarm functions 
are applied. An absolute input alarm provides adjustable 
high and low alarm limits on the scaled and linearised PV 
signals, and a deviation alarm (with adjustable limits) 
applied to the error signal. These alarm signals are brought 
out of the controller as digital outputs. 

The basic PID algorithm is implemented digitally and 
includes a few variations to deal with some special circum-
stances. These modifications utilise the additional signals to 
the PID block (PV, hold, track, output balance) and are 
described later. 

The PID algorithm output is the actuator drive signal 
scaled 0±100%. The PID algorithm assumes that an increas-
ing drive signal causes an increase in PV. Some actuators, 
however, are reverse acting, with an increasing drive signal 
reducing PV. A typical example is cooling water valves 
which are designed to fail open delivering full flow on loss 
of signal. Before the PID algorithm can be used with reverse 
acting actuators (or reverse acting transducers) its output 
signal must be reversed. A set up switch selects normal 
or inverted PID output. Note that reverse action does not 
alter the polarity of the controller output, merely the sign of  
the gain. 

The output signal is selected from the manual raise/lower 
signal or the PID signal by the front panel manual/auto/ 
remote pushbuttons M, A, R. At this stage limits are 
applied to the selected output drive. This limiting can be 
used to constrain actuators to a safe working range. The 
output limit allows the controller output to be limited just 
before the actuator's ends of travel, keeping the PV under 
control at all times. 

Two controller outputs are provided, 0±10 V and 4±20 mA 
for use with voltage and current driven actuators. The line-
arised PV signal is also retransmitted as a 0±10 V signal for 
use with the separate external indicators and recorders. 

13.27.3 Bumpless transfer 

The output from the PID algorithm is a function of time 
and the values of the set point and the process variable. 
When the controller is operating in manual mode it is highly 
unlikely that the output of the PID block will be the same as 
the demanded manual output. In particular the integral 
term will probably cause the output from the PID block to 
eventually saturate at 0% or 100% output. 

If no precautions are taken, therefore, switching from 
auto to manual, then back to auto again some time later 
will result in a large step change in controller output at the 
transition from manual to automatic operation. 

To avoid this `bump' in the plant operation, the control-
ler output is fed back to the PID block, and used to main-
tain a PID output equal to the actual manual output. This 
balance is generally achieved by adjusting the contribution 
from the integral term. 

Mode switching can now take place between automatic 
and manual modes without a step change in controller out-
put. This is known as manual/auto balancing, preload or 
(more aptly) bumpless transfer. 

A similar effect can occur on set point changes. With a 
straightforward PID algorithm, a setpoint change of �SP 
will produce an immediate change in controller output of 
K ��SP where K is the controller gain. In some applications 
this step change in output is unacceptable. In Figure 13.78 a 
term K �SP is subtracted from the PID block output. The 
controller now responds to errors caused by changes in PV 
in the normal way, but only reacts to changes in SP via the 
integral and derivative terms. Changes in SP thus result in a 
slow change in controller output. This is known as setpoint 
change balance, and is a switch selectable set up option. 

This balance signal fed back from the output to the PID 
block is also used when the controller output is forced to 
follow an external signal. This is called track mode. 

As before, the PID algorithm needs to be balanced to 
avoid a bump when transferring between track mode and 
automatic mode. The feedback output signal achieves this 
balance as described previously. 

13.27.4 Integral windup and desaturation 

Large changes in SP or large disturbances to PV can lead to 
saturation of the controller output or a plant actuator. 
Under these conditions the integral term in the PID 
algorithm can cause problems. 

Figure 13.79 shows the probable response of a system with 
unrestricted integral action. At time A a step change in set 
point occurs. The output OP rises first in a step (K �( set point 
change) then rises at a rate determined by the integral time. 
At time B the controller saturates at 100% output, but the 
integral term keeps on rising. 

At the time C PV reaches, and passes, the required value, and 
as the error changes sign the integral term starts to decrease, 
but it takes until time D before the controller desaturates. 
Between times B and D the plant is uncontrolled, leading to 
an unnecessary overshoot and possibly even instability. 

This effect is called `integral windup' and is easily avoided 
by disabling the integral term once the controller saturates 
either positive or negative. This is naturally a feature of all 
commercial controllers, but process control engineers 
should always by suspicious of `home brew' control algo-
rithms constructed (or written in software) by persons with-
out control experience. 

Figure 13.78 Set point change balance, the controller only follows set point changes on the integral term giving a ramped response to a change of 
set point 
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Figure 13.79 The effect of integral windup 

In any commercial controller, the integral term would 
be disabled at point B on Figure 13.80 to prevent integral 
windup. The obvious question now is at what point it is 
re-enabled again. Point C is obviously far too late (although 
much better than point D in the unprotected controller). 

A common solution is to desaturate the integral term at 
the point where the rate of increase of the integral action 
equals the rate of decrease of the proportional and deriva-
tive terms. This occurs when the slope of the PID output is 
zero, i.e. when � � 

de d2 e 
e � �Ti � Td �13:23�(

dt dt2 

with e being the error and Ti and Td the controller 
constants. 

Equation 13.23 brings the controller out of saturation 
at the earliest possible moment, but this can, in some cases, 
be too soon leading to an unnecessarily damped response. 
Some controllers allow adjustment of the desaturation 
point by adding an error limit circuit to delay the balance 
point to Equation 13.23 forcing the controller to remain in 
saturation for a longer time. The speed of desaturation and 
the degree of overshoot can thus be adjusted by the com-
missioning engineer. 

13.27.5 Selectable derivative action 

The term Td (de/dt) in the three term controller algorithm 
can be rearranged as � � 

dSP dPV
Td �(

dt dt 

where SP is the set point and PV the process variable. The 
derivative term thus responds to changes in both the set 
point and the plant feedback signal. 

This is not always desirable; in particular a step change in 
set point leads to an infinite spike controller output and a 
vicious ̀ kick' to the actuator. Commercial controller therefore 
include a selectable option for the derivative term to be based 
on true error (SP±PV) or purely on the value of PV alone. 

There is generally no noticeable difference in plant per-
formance between these options; stability or the ability to 
deal with disturbances or load changes are unaffected, and 
derivative on PV is normally the preferred choice. The only 
occasion when true derivative on error is advantageous is 
where the PV is required to track a continually changing SP. 
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13.27.6 Variations on the PID algorithm 

The theoretical PID algorithm is described by the equation � � � 
1 de 

OP � K e �( edt � Td
Ti dt 

T
where e is the error, K is the gain, Ti is the integral time and 

d the derivative time. Unfortunately different manufacturers 
use different terminology and even different algorithms. 

Many manufacturers define the gain as the proportional 
band, denoted as PB or PB. This is the inverse of the gain 
expressed as a percentage, i.e 

100 
PB �( % 

K 

A gain of two is thus the same as a proportional band of  
50%, and decreasing the proportional band increases the 
gain. 

The integral time is commonly expressed as `Repeats per 
Minute' or rpm. The relationship is given by: 

Repeats per min � 1=Ti � for Ti in min) 

� 60=Ti ( for  Ti in sec) 

The derivative time is often called the rate or pre-act term 
but these are all identical to Td. 

More surprisingly there are variations on the basic algo-
rithm. Some manufacturers use a so called `non interacting' 
or `parallel ' equation which can be expressed as: � 

1 de 
OP � Ke �( edt � Td

Ti dt 

or � 
de 

OP � Ke � Ki edt � Kd 
dt 

In these the three terms are totally independent. In the 
second version Ki is called the integral gain and Kd the 
derivative gain. Note that increasing Ki has the same 
effect as decreasing Ti. It is tempting to think that the non 
interacting equations are simpler to use, but in practice the 
theoretical model is more intuitive. In particular, as the gain 
K is reduced in the non interacting equation, any integral 
action has more effect and contributes more phase shift. 
Increasing or decreasing the gain with a non interacting 
controller can thus cause instability. 

There is yet a third form of PID algorithm known as the 
`series' equation. This can be expressed as: � � �� � 

1 de 
OP � K e  �( edt 1 � Td

Ti dt 

This algorithm is based on pneumatic and early electronic 
controllers, and some manufacturers have maintained it to 
give backward compatibility. This has the odd characteris-
tic that the Ti and Td controls interact with each other, with 
the maximum derivative action occurring when Td and Ti 
are set equal. In addition the ratio between Ti and Td inter-
acts with the overall gain. 

There are further variations on the way the derivative 
contribution is handled. We have already discussed the 
effect of derivative on process variable and derivative on 
error. Because the pure derivative term gives increasing gain 
with increasing frequency it amplifies any high frequency 
noise resulting in continual twitchy movements of the plant 
actuators. Many manufacturers therefore deliberately roll 
off the high frequency gain, either by filtering the signal 
applied to the derivative function or directly limiting the 
derivative action. 
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13.27.7 Incremental controllers 

Diaphragm operated actuators can be arranged to fail open 
or shut by reversing the relative positions of the drive pres-
sure and return spring. In some applications a valve will be 
required to hold its last position in the event of failure. One 
way to achieve this is with a motorised actuator, where a 
motor drives the valve via a screw thread. 

Such an actuator inherently holds its last position but 
the position is now the integral of the controller output. 
An integrator introduces 90�( phase lag and gain which falls 
off with increasing frequency. A motorised valve is there-
fore a destabilising influence when used with conventional 
controllers. 

Incremental controllers are designed for use with 
motorised valves and similar integrating devices. They 
have the control algorithm � � 

1 de 1 d2 e 
OP � K e � �(

Ti dt Td dt2 

which is the time derivative of the normal control 
algorithm. 

Incremental controllers are sometimes called boundless 
controllers or velocity controllers because the controller out-
put specifies the actuator rate of change (i.e. velocity) rather 
than actual position. 

Incremental controllers cannot suffer from integral 
windup per se, but it is often undesirable to keep driving a 
motorised valve once the end of travel is reached. End of  
travel limits are often incorporated in motorised valves to 
prevent jamming. The controller also has no real `idea' of 
the valve true position, and hence cannot give valve position 
indication. If end of travel signals are available, a valve 
model can be incorporated into the controller to integrate 
the controller output to give a notional valve position. This 
model would be corrected whenever an end of travel limit is 
reached. Alternatively a position measuring device can be 
fitted to the valve for remote indication. 

Pulse width modulated controllers are a variation on the 
incremental theme. Split phase motor drive valves require 
logic raise/lower signals, and normal proportional control 
can be simulated by using time proportional raise/lower 
outputs. 

13.27.8 Scheduling controllers 

Many loops have properties which change under the influ-
ence of some measurable outside variable. The gain of a 
flow control valve, (i.e. the change in flow for change in 
valve position) varies considerably over the stroke of a 
valve. The levitation effect of steam bubbles in a boiler 
drum causes the drum level control to have different char-
acteristics under start-up, low load and high load condi-
tions. 

A scheduling controller has a built-in look up table of 
control parameters (gain, filtering, integral time etc.) and 
the appropriate values selected for the measured plant 
conditions. 

13.27.9 Variable gain controllers 

Process variable noise occurs in many loops; level and 
flow being possibly the worst offenders. This noise causes 
unnecessary actuator movement, leading to premature wear 
and inducing real changes in the plant state. Noise can, of 
course, be removed by first or second order filters, but 

these reduce the speed of the loop and the additional phase 
shift from the filters can often act to de-stabilise a loop. 

A controller with gain K will pass a noise signal K�n(t) to  
the actuator where n(t) is the noise signal. One obvious way 
to reduce the effect of the noise is to reduce the controller 
gain, but this degrades the loop performance. Usually the 
noise signal has a small amplitude compared with the signal 
range, if it has not the process will be practically uncontrol-
lable. What is intuitively required is a low gain when the 
error is low, but a high gain when the error is high. 

Figure 13.80(a) shows how such a scheme operates. The 
noise amplitude lies in the range AB, so this is made a low 
gain region. Outside this band the gain is much higher. The 
gain in the region AB should be low, but not zero, to keep 
the process variable at the set point. With a pure deadband 
(i.e. zero gain in region AB) the process variable would 
cycle between one side of the centre band and the other. 

Figure 13.80(b) shows a possible implementation. A com-
parator switches between a low gain and high gain control-
ler according to the magnitude of the error. Note that 
integral balancing is required between the two controllers 
to stop integral windup in the unselected controller. 

Figure 13.80 has two gain regions. It is possible to con-
struct a controller whose gain varies continuously with 
error. Such a controller has a response � � � 

1 de 
OP � Kf�e�( e �( edt � Td

Ti dt 

where f(e) is a function of error. 

A common function is � � 
m � �1 �m�e 

f �e� � abs �13:24�(
100 

where e is expressed as a percentage (0±100%) and m is a 
user set linearity adjustment (0 <& m <& 1). The abs operation 
(which always returns a positive sign) is necessary to 
prevent the controller action changing sign on negative 
error. 

With m � 1, f(e) � 1 and Equation 13.24 behaves as a nor-
mal three term controller. With m � 0. the proportional part 
of Equation 13.24 follows a square law. Like Figure 
13.80(a), this has low gain or small error (zero gain at zero 
error) but progressively increasing gain as the error 
increases. 

Position control systems often need a fast response but 
cannot tolerate an overshoot. These often use Equation 
13.24 with m at a low value approximating to the quadratic 
curve. This gives a high take off speed, but a low speed of 
approach. 

13.27.10 Inverse plant model 

The ideal control strategy, in theory, is one which mimics 
the plan behaviour. Given a totally accurate model of the 
plant, it should be possible to calculate what controller out-
put is required to follow set point change, or compensate 
for a disturbance. The problem here is, of course, having 
an accurate plant model, but even a rough approximation 
should suffice as the controller output will converge to the 
correct value eventually. 

One possible solution is shown in Figure 13.81. The pro-
cess is represented by a block with transfer function K�f(s) 
where K is the d.c. (low frequency) gain. Following a change 
in set point, the signal A should mimic exactly the process 
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Figure 13.80 Variable gain controller: (a) system response; (b) block diagram 

variable B, leading to a constant output from the controller 
exactly correct to bring the plant to the set point without 
overshoot. With a perfect model, the change at A should 
match the change at B as the set point is approached. 

The inverse plant model is usually implemented with a 
sampled digital system. The problem with this simple, and 
apparently ideal, controller is that it will probably demand 
actuation signals which will drive the controller output, the 
actuator or parts of the plant, into saturation. It also requires 
an accurate plant model. A more gentle version of this tech-
nique aims to get a fraction, say 0.1 of the way from the cur-
rent value to the desired value of the process variables at each 
sample time. This approximates to an exponential response. 

13.28 Digital control algorithms 

13.28.1 Introduction 

So far we have assumed that controllers deal with purely 
analog signals. Increasingly controllers are digital, with the 
analog signal from the transducer being sampled by an 
ADC, the control algorithm being performed by software 
and the analog output being obtained from a DAC. ADCs 
and DACs are described in Chapter 14, Section 14.9. The 
system does not therefore continually control but takes 
`snapshots' of the system state. Such an approach is called 
a sampled system. 

Figure 13.81 The inverse plant model 
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13.28.2 Shannon's sampling theorem 

A sampled system only knows about the values of its 
samples. It cannot infer any other information about the 
signals it is dealing with. An obvious question, therefore, is 
what sample rate we should choose if our samples are to 
accurately represent the original analog signals. 

In Figure 13.82(a) a sine wave is being sampled at a relat-
ively fast rate. Intuitively one would assume this sampling 
rate is adequate. In Figure 13.82(b) the sample rate and the 

frequency are the same. This is obviously too slow as the 
samples imply a constant unchanging output. 

In Figure 13.82(c) the sample rate is lower than the 
frequency and the sample values are implying a sine wave 
of much lower frequency than the signal. This is called 
`aliasing'. A visual effect of aliasing can be seen on cinema 
screens where moving wheels often appear to go backwards. 
This effect occurs because the camera samples the world at 
about 50 times per second. 

Figure 13.82 The effect of the sampling rate: (a) good sampling rate; (b) sampling frequency same as signal frequency, too slow; (c) sampling 
rate much too slow, aliasing is occurring 
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Any continuous signal will have a bandwidth of interest. 
The sampling frequency should be at least twice the bandwidth 
of interest. This is known as Shannon's sampling theorem. 
Any real life system will not, however, have a well defined 
bandwidth and sharp cut-off point. Noise and similar effects 
will cause any real signal to have a significant component at 
higher frequencies. Aliasing may occur with these high fre-
quency components and cause apparent variations in the 
frequency band of interest. Before sampling, therefore, any 
signal should be passed through a low pass anti-aliasing filter 
to ensure only the bandwidth of interest is sampled. 

Most industrial control signals have a bandwidth of a few 
Hz, so sampling within Shannon's limit is usually not a prob-
lem. Normally the critical bandwidth is not known precisely 
so a sample rate of about 5 to 10 times the envisaged band-
width is used. 

13.28.3 Control algorithms 

To achieve three term control with sampled signals we must 
find the derivative and the integral of the error. As shown 
on Figure 13.83 we are dealing with a set of sampled signals, 
yn, yn�1, yn�2 etc. where yn is the most recent. If the sample 
time is �t, the slope is then given by: 

Yn �( Yn�1
slope �(

�t 
Integration is equivalent to finding the area under a curve as 
shown for an analog and digital signal on Figure 13.83(b). 
The trapezoid integration of Figure 13.83(c) is commonly 
used where the area is given by: 

�t�Yn �( Yn�1�(
area �(

2 
Combining these gives a digital sampled PID algorithm � � 

1 X�t�en �( en�1 Td
OP �( K en �( � �en �( en�1�(

Ti 2 �t 

y3 y7 

where en is the error for sample n and �t the sample time as 
before. 

13.29 Auto-tuners 

Tuning a controller is more of an art than an exact science 
and can be unbelievably time consuming. Time constants of 
tens of minutes are common in temperature loops, and lags 
of hours occur in some mixing and blending processes. 
Performing, say, the ultimate cycle test of Section 13.30.2 
on such loops can take several days. 

Self tuning controllers aim to take the tedium out of set-
ting up a control loop. They are particularly advantageous 
if the process is slow (i.e. long time constants) or the loop 
characteristics are subject to change (e.g. a flow control 
loop where pressure/temperature changes in the fluid alter 
the behaviour of the flow control valve.) 

Self tuning controllers give results which are generally as 
good, if not slightly better, than the manual methods of  
Section 13.30 (possibly because self tuning controllers have 
more patience than humans!). In the author's experience, 
however, the results from a self tuner should be viewed as 
recommendations or initial settings in the same way as the 
results from the manual methods described in the following 
sections. One early decision to be made when self tuners are 
used is whether they should be allowed to alter control 
parameters without human intervention. Many engineers 
(of whom the author is one) view self tuners as commission-
ing aids to be removed before a plant goes into production. 

There are essentially two groups of self tuners. Modelling 
self tuners try to build a mathematical model of the plant 
(usually second order plus transit delay) then determine 
controller parameters to suit the model. These are some-
times called explicit self tuners. 

Model identification is usually based on the principles 
of Figure 13.84. The controller applies a control action OP 
to the plant and to an internal model. The plant returns a 
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Figure 13.83 Control algorithm with sampled signals: (a) the sampled signals; (b) integration for an analog and digital signal; (c) trapezoid 
integration 
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Figure 13.84 A modelling self tuning controller 

process variable PV and the model a prediction PVm. These 
are compared, and the model updated (often via the statis-
tical least squares technique). On the basis of the new 
model, new control parameters are calculated, and the 
sequence repeated. 

A model building self tuner requires actuation changes to 
update its model, so it follows that self tuners do not per-
form well in totally static conditions. In a totally stable 
unchanging loop, the model, and hence the control para-
meters, can easily drift off to ridiculous values. To prevent 
this, most self tuners are designed to `kick' the plant from 
time to time, with the size and repetition rate of the kick 
being set by the control engineer. Less obviously, model 
building self tuners can be confused by outside disturbances 
which can cause changes in PV that are not the result of the 
controller output. 

The second group of self tuners (sometimes called implicit 
tuners) use automated versions of the manual tests 
described in Section 13.30, and as such do not attempt to 
model the plant. A typical technique will vary the controller 
gain until a damped oscillatory response is observed. The 
control parameters can then be inferred from the controller 
gain, the oscillation period and the oscillation decay rate. 

The useful bang/bang test of Section 13.30.3 can be 
performed automatically by a controller which forces limit 
cycling in the steady state via a comparator. A limit block 
after the comparator restricts the effect on the plant. 

Implicit self tuners, like their modelling brothers, do not 
perform well on a stable unchanging loop, and can be 
equally confused by outside disturbances. 

13.30 Practical tuning methods 

13.30.1 Introduction 

Values must be set for the gain and integral/derivative times 
before a controller can be used. In theory, if a plant model is 

available, these values can be determined from Nichols 
charts or Nyquist diagrams. Usually, however, the plant 
characteristics are not known (except in the most general 
terms) and the controller has to be tuned by experimental 
methods. 

It should be noted that all these methods require pushing 
the plant to the limit of stability. The safety implications of  
these tests must be clearly understood. Tuning can also be 
very time consuming. With large chemical plants tuning of 
one loop can take days. 

Most of the tests aim to give a quarter cycle decay and 
assume the plant consists of a transit delay in series with a 
second order block (or two first order lags) plus possible 
integral action. 

In conducting the tests, it is useful to have a two pen 
recorder connected to the PV (process variable) and OP 
(controller output) as shown on Figure 13.85. The range of 
the pens (e.g. 0±10 V or 1±5 V) should be the same. 

In the tests below, the gain is expressed as proportional 
band (PB) per cent. Time is used for integral and derivative 

Figure 13.85 Suggested equipment setup for controller tuning 
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action. Conversion to gain or repeats per minute is straight-
forward. 

13.30.2 Ultimate cycle methods 

The basis of these methods is determining the controller 
gain which just supports continuous oscillation, i.e. point 
A and gain K on the Nichols chart and Nyquist diagram of 
Figure 13.86. The method is based on work by J. G. Ziegler 
and N. B. Nichols and is often called the Ziegler Nichols 
method. 

The integral and derivative actions are disabled to give 
proportional only control, and the control output manually 
adjusted to bring PV near the required value. Auto control 
is selected with a low gain. 

Step disturbances are now introduced and the effect 
observed. One way of doing this is to go back into manual, 
shift OP by, say 5%, then reselect automatic control. At 
each trial the gain is increased. The increasing gain will 
give a progressively underdamped response and eventually 
continuous oscillation will result. Care must be taken in 
these tests to allow all transients to die away before each 
new value of gain is tried. 

If the value of gain is too high, the oscillations will 
increase. The value of gain which gives constant oscillations 
neither increasing or decreasing is called the ultimate gain, 
or Pu (expressed as proportional band). The period of the 
oscillations Tu should also be noted from the chart recorder 
(or with a watch). 

The required controller settings are: 

Proportional only control 

PB 2Pu % 

PI Control 

PB 2.2Pu % 
Ti 0.8.Tu 

PID Control 

PB 1.67 . Pu % 
Ti Tu/2 
Td Tu/8 

Ti �( 4 Td is a useful rule of thumb. 

Other recommended settings for a PID controller are: 

PB 2Pu % 
Ti Tu 
Td Tu /5 

and 

PB 2Pu % 
Ti 0.34Tu 
Td 0.08Tu 

All of these values should be considered as starting points 
for further tests. 

13.30.3 Bang/bang oscillation test 

This is the fastest, but most vicious, test. It can, though, be 
misleading if the plant is non linear. Integral and derivative 
actions are disabled and the controller gain set as high as 
possible (ideally infinite) to turn the controller into a bang-
bang controller. The controller output is set manually to 
bring the process value near the set point then the controller 
switch into automatic mode. 

Violent oscillations will occur as shown on Figure 13.87. 
The period of the oscillations To is noted along with the 
peak to peak height of the process variable oscillations as a 
percentage Ho% of full scale. 

The required controller settings are: 

Proportional control 

PB 2.Ho% 

PI Control 

PB 3.Ho% 
Ti 2.To 

PID Control 

PB 2.Ho% 
Ti To 
Td To/4 

13.30.4 Reaction curve test 

This is an open loop test originally proposed by American 
engineers Cohen and Coon. It assumes the plant consists 
of a measurable transit delay and a dominant time constant. 
It cannot be applied to plants with integral action (e.g. level 
control systems). 

A chart recorder must be connected to the plant as shown 
earlier on Figure 13.85 to perform the test. The controller 
output is first adjusted manually to bring the plant near to 
the desired operating point. After the transients have died 
away a small manual step �OP is applied which results in a 
small change �PV as shown on Figure 13.88. 

The process gain Kp is then simply �PV/�OP. 

Figure 13.86 Basis of the ultimate cycle test. Point A determines the frequency at which continuous oscillations will occur when gain K is applied: 
(a) Nichols chart; (b) Nyquist diagram 
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Figure 13.87 The bang-bang oscillation test 

Figure 13.88 The reaction curve test 

A tangent is drawn to the process variable curve at the 
steepest point from which an apparent transit delay Tt and 
time constant Tc can be read. The settings for the controller 
are then given by: 

P
Proportional


B 100.Kp.Tt/Tc %


T
P

PI

B 110.Kp.Tt/Tc %

i 3.3 Tt


T
T
P

PID

B 80.Kp.Tt/Tc %

i 2.5 Tt


d 0.4 Tt


Because the test uses an open loop trial with a small 
change in the controller output it is the gentlest and least 
hazardous tuning method. 

13.30.5 A model building tuning method 

The closed loop tuning methods described so far require the 
plant to be pushed to, (and probably beyond), the edge of 
instability in order to set the controller. An interesting 
gentle tuning method was described by Yuwana and Seborg 
in the journal AIChE Vol 28 no 3 in 1982. 

The method assumes the plant has gain KM and behaves 
as a dominant first order lag TM in series with a transit 
delay DM. This assumption can give gross anomalies with 
plants with integral action such as level or position controls, 
but is commonly used for many manual and automatic/ 
adaptive controller tuning methods. With the above warn-
ing noted, the suggested controller settings can be found 
from: 

K �( A�DM =TM ��B/KM 

TI �( CTM�DM =TM�D 

TD �( TME�DM =TM�F 

where A, B, C, D, E, F are constants defined: 

Mode A B C D E F 

P 0.490 1.084 
PI 0.859 0.997 1.484 0.680 
PID 1.357 0.947 1.176 0.738 0.381 0.99 

These apparently random equations and constants come 
from experimental work described by Miller et al in Control 
Engineering Vol 14 no 12. 

The method of finding the plant gain, time constant and 
transit delay is based on a single quick test with the plant 
operating under closed loop control. The test is performed 
on the plant operating under proportional only control, 
with a gain sufficient to produce a damped oscillation as 
Figure 13.89 when a step change in set point from R0 to R1 
is applied. 

The subsequent process maximum CP1, minimum CM1 
and next maximum CP2 are noted along with the time DT2 
between CP1 and CP2. The controller proportional band 
used for the test, PB, is also recorded, from which the con-
troller gain KPB �( 100/PB is found. 

T

Given the values from the test the method estimates the 
value of the plant steady state gain KM, lag time constant 

M and the transit delay time DM. The background math-
ematics is given at length in the original paper. 
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Figure 13.89 Test performed for model building tuning test. Note that Ro 

The equations above are not very practical for manual 
use on site, so the original paper was developed into a pro-
gram for the Hewlett Packard HP-67 calculator by Jutan 
and Rodriguez and published in the magazine Chemical 
Engineering September 1984. The nomenclature used in the 
above equations is based on this article. 

13.30.6 General comments 

The above test procedures do not give guaranteed results 
and should be viewed as a method of putting the engineer 
in the right area. They should be viewed as the starting 
point for further trials. The important thing in these trials 
is only change one thing at once. 

With values set as above the effect of changing the gain 
should be tried first. It is always useful to have the propor-
tional gain as high as possible to give the largest initial con-
trol action to changes and disturbances. However, a large 
gain can give undesirable changes in the controller output if 
the process variable is noisy. The gain should be adjusted to 
give the desired overshoot and damping. 

Integral action should be adjusted next to give best 
removal of offset error. During these trials it is best to dis-
able any derivative action. Decreasing the integral time 
reduces the time taken to remove the offset error. It may 
be necessary to reduce the gain again as integral time 
is decreased. A useful rule of thumb is that the ratio of 
Ti/Gain is an `index' of stability for a given system, i.e. a Ti 
of 12 sec and a gain of 2 will give a similar damping to a Ti 
of 24 sec and a gain of 4. 

The derivative action should be adjusted last. Many sys-
tems do not benefit from derivative action, particularly 
those with a noisy process variable signal which causes 
large controller output swings. Where derivative action is 
required, Td �(Ti/4 is a good starting point. Many control-
lers allow the user to select derivative action on error or 
derivative action on process variable. The former is best 
for tracking systems, but gives large controller output 
swings for step changes in the set point. Derivative action 
on process variable is usually the best choice. 

One final observation, based on experience rather than 
theory, is that a PB of 200% (gain of 0.5), Ti of 20 sec and 
no derivative action is a good starting point for a majority 
of plants. Adjust the gain to give the required overshoot 
then adjust Ti to be as small as possible. Finally set Td, if  
needed, to Ti/4. 

and Co need not be the same and DR can be positive or negative 
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