
//integras/b&h/Eer/Final_06-09-02/eerc016

16 Programmable

Controllers

16.1 Introduction 16/3
16.1.1 16/3
16.1.2 16/3
16.1.3 16/4

16.2 16/6
16.2.1 16/6
16.2.2 16/6
16.2.3 16/10
16.2.4 16/10

16.3 16/13
16.3.1 Introduction 16/13
16.3.2 16/14
16.3.3 16/16
16.3.4 16/17
16.3.5 16/18
16.3.6 16/20
16.3.7 Timers 16/22
16.3.8 Counters 16/23
16.3.9 16/24
16.3.10 16/24
16.3.11 16/27

16.4 Numerics 16/29
16.4.1 16/29
16.4.2 16/30

16.4.3 16/31
16.4.4 16/33
16.4.5 16/34
16.4.6 16/35
16.4.7 16/38
16.4.8 16/39

16.5 16/41
16.5.1 Introduction 16/41
16.5.2 16/41
16.5.3 16/41
16.5.4 16/42
16.5.5 16/42
16.5.6 16/43
16.5.7 Ethernet 16/43
16.5.8 16/43

16.6 Graphics 16/45

16.7 16/48

16.8 Safety 16/48

E A Parr MSc, CEng, MIEE, MInstMC
CoSteel Sheerness

Contents

The computer in control
Requirements for industrial control
Enter the PLC

16.1.4 The advantages of PLC control 16/5

The programmable controller
Modern PLC systems
I/O connections
Remote I/O
The program scan

Programming methods

I/O identification
Ladder logic
Logic symbols
Statement list
Bit storage

Combinational logic
Event driven logic and SFCs
IEC 1131

Numerical applications
Numeric representations

Data movement
Data comparison
Arithmetical operations
Analog signals
Closed loop control
Intelligent modules

Distributed systems and fieldbus

Transmission lines
Network topologies
Network sharing
A communication hierachy
Proprietary systems

Towards standardisation

Software engineering

//integras/b&h/Eer/Final_06-09-02/eerc016

//integras/b&h/Eer/Final_06-09-02/eerc016

Introduction 16/3

16.1 Introduction

16.1.1 The computer in control

A computer can be considered as a device that follows
predetermined instructions to manipulate input data in
order to produce new output data as summarised on
Figure 16.1(a). Early computer systems tended to be based
on commercial functions; payroll, accountancy, banking and
similar activities. The operations tended to be batch pro-
cesses; a daily update of stores stock for example.
A computer can also be used as part of a control system

as Figure 16.1(b). The input data will be the operator's com-
mands and signals from the plant (limit switches, flows,
temperatures). The output data are control actions to the
plant and status displays to the operator. The instructions
will define what action is to be taken as the input data (from
both the plant and the operator) changes.
The first industrial computer application was probably

a system installed in an oil refinery in Port Arthur USA
in 1959. The reliability and mean time between failure of
computers at this time meant that little actual control was
performed by the computer, and its role approximated to
a simple monitoring subsystem.

16.1.2 Requirements for industrial control

Industrial control has rather different requirements than
other computer applications. It is worth examining these in
some detail.

A conventional computer takes data, usually from a key-
board, and outputs data to a screen or printer. The data
being manipulated will generally be characters or numbers
(e.g. item names and quantities held in a stores stock list).
An industrial control computer is very different. Its inputs

come from a vast number of devices. Although some of
these will be numeric (flows, temperature, pressures and
similar analog signals) the majority will be single bit, on/off,
digital signals representing valves, limit switches, motor
contactors etc.
There will also be a similar large amount of digital and

analog output signals. A very small control system may
have connections to about twenty input and output signals;
figures of over two hundred connections are quite common
on medium sized systems.
Although it is possible to connect this quantity of signals

into a conventional machine, it requires non-standard
connections and external boxes. Similarly, although pro-
gramming for a large amount of input and output signals
can be done in Pascal, BASIC or C, the languages are being
used for a purpose for which they were not really designed,
and the result can be very ungainly.
In Figure 16.2(a), for example, we have a simple motor starter.

This could be connected as a computer driven circuit as Figure
16.2(b). The two inputs are identified by addresses 1 and 2,
with the output (the relay starter) being given the address 10.
If we assume a program function bitread (N) exists

which gives the state (on/off) of address N, and a function
bitwrite (M, var) which sends the state of program variable
var to address M, we could give the actions of Figure 16.2 by

Figure 16.1 The computer as part of an industrial control system: (a) a simple overview of a computer; (b) the computer as part of a control system

Figure 16.2 Comparison of hardwire and computer based systems: (a) hardwire motor starter; (b) computer based motor starter

//integras/b&h/Eer/Final_06-09-02/eerc016

16/4 Programmable controllers

where start, stop and run are one bit variables. The
program is not very clear, however, and we have just three
connections.
An industrial control program rarely stays the same for

the whole of its life. There are always modifications to cover
changes in the operations of the plant. These changes will be
made by plant maintenance staff, and must be made with
minimal (preferably none) interruptions to the plant pro-
duction. Adding a second stop button and a second start
button into Figure 16.2 would not be a simple task.
In general, computer control is done in real time, i.e. the

computer has to respond to random events as they occur.
An operator expects a motor to start (and more important
to stop!) within a fraction of a second of a button being
pressed. Although commercial computing needs fast com-
puters, it is unlikely that the difference between a one sec-
ond and two second computation time for a spreadsheet
would be noticed by the user. Such a difference would be
unacceptable for industrial control.
Time itself is often part of the control strategy (e.g. start

air fan, wait 10 secs for air purge, open pilot gas valve, wait
0.5 s, start ignition spark, wait 2.5 s, if flame present open
main gas valve). Such sequences are difficult to write with
conventional languages.
Most control faults are caused by external items (limit

switches, solenoids and similar devices) and not by failures
within the central control itself. The permission to start a
plant, for example, could rely on signals involving cooling
water flows, lubrication pressure and temperatures all being
within allowable ranges. For quick fault finding the
maintenance staff must be able to monitor the action of
the computer program whilst it is running. If, as is quite
common, there are ten interlock signals which allow a motor
to start, the maintenance staff will need to be able to check
these quickly in the event of a fault. With a conventional
computer, this could only be achieved with yet more com-
plex programming.
The power supply in an industrial site is shared with

many antisocial loads; large motors stopping and starting,
thyristor drives which put spikes and harmonic frequencies
onto the mains supply. To a human these are perceived
as light flicker; to a computer they can result in storage
corruption or even machine failure.
An industrial computer must therefore be able to live

with a `dirty' mains supply, and should also be capable of
responding sensibly following a total supply interruption.
Some outputs must go back to the state they were in before
the loss of supply, others will need to turn off or on until an
operator takes corrective action. The designer must have
the facility to define what happens when the system powers
up from cold.
The final considerations are environmental. A large

mainframe computer generally sits in an air conditioned
room at a steady 20 �C with carefully controlled humidity.
A desk top PC will normally live in a fairly constant office
environment because human beings do not work well at
extremes. An industrial computer, however, will probably
have to operate away from people in a normal electrical

substation with temperatures as low as �10 �C after a winter
shutdown, and possibly over 40 �C in the height of summer.
Even worse, these temperature variations lead to a constant
expansion and contraction of components which can lead to
early failure if the design has not taken this factor into
account.
To these temperature changes must be added dust and

dirt. Very few industrial processes are clean, and the dust
gets everywhere. The dust will work itself into connectors,
and if these are not of a highest quality, intermittent faults
will occur which can be very difficult to find.
In most computer applications, a programming error or a

machine fault can often be humorous (bills and reminders
for 0p) or at worse expensive and embarrassing. When
a computer controlling a plant fails, or a programmer
misunderstands the plants operation, the result could be
injuries or fatalities. It behoves everyone to take extreme
care with the design.
Our requirements for industrial control computers are

very demanding, and it is worth summarising them:

.	 They should be designed to survive in an industrial
environment with all that this implies for temperature,
dirt and poor quality mains supply.

.	 They should be capable of dealing with bit form digital
input/output signals at the usual voltages encountered
in industry (24 V d.c. to 240 V a.c.) plus analog input/
output signals. The expansion of the I/O should be
simple and straightforward.

.	 The programming language should be understandable
by maintenance staff (such as electricians) who have no
computer training. Programming changes should be
easy to perform in a constantly changing plant.

.	 It must be possible to monitor the plant operation whilst
it is running to assist fault finding. It should be appre-
ciated that most faults will be in external equipment
such as plant mounted limit switches, actuators and sen-
sors, and it should be possible to observe the action of
these from the control computer.

.	 The system should operate sufficiently fast for real-time
control. In practice, `sufficiently fast' means a response
time of around 0.1 sec, but this can vary dependent on
the application and the controller used.

. The user should be protected from computer jargon.

. Safety must be a prime consideration.

16.1.3 Enter the PLC

In the late 1960s the American motor car manufacturer
General Motors was interested in the application of com-
puters to replace the relay sequencing used in the control of
its automated car plants. In 1969 it produced a specification
for an industrial computer similar to that outlined at the
end of the previous section.
Two independent companies, Bedford Associates (later

called Modicon) and Allen Bradley (now owned by
Rockwell) responded to General Motors specifications.
Each produced a computer system similar to Figure 16.3
which bore little resemblance to the commercial mini-
computers of the day.
The computer itself, called the central processor, was

designed to live in an industrial environment, and was
connected to the outside world via racks into which input,
or output cards could be plugged.
Each input or output card could connect to 16 signals.

A typical rack would contain eight cards and the processor
could connect to eight racks, allowing connection to 1024

//integras/b&h/Eer/Final_06-09-02/eerc016

Introduction 16/5

PLC rack, typically 8 per system, each rack
holding 8 to 16 cards

Program
terminal

Central
processor

C
ar

d
3

C
ar

d
2

C
ar

d
0

C
ar

d
1

C
ar

d
4

C
ar

d
5

C
ar

d
6

C
ar

d
7

C
ar

d
0

C
ar

d
1

C
ar

d
2

C
ar

d
3

C
ar

d
4

C
ar

d
5

C
ar

d
6

C
ar

d
7

Plant
input & output
signals
(typically 16
per card)

Remote I/O
serial communication
to other racks

Figure 16.3 The component parts of an early PLC system

devices. It is very important to appreciate that the card allo-
cations were the user's choice, allowing great flexibility.
The most radical idea, however, was a programming

language based on a relay schematic diagram, with inputs
(from limit switches, pushbuttons, etc.) represented by relay
contacts, and outputs (to solenoids, motor starters, lamps,
etc.) represented by relay coils. Figure 16.4(a) shows a
simple hydraulic cylinder which can be extended or
retracted by pushbuttons. Its stroke is set by limit switches
which open at the end of travel, and the solenoids can only
be operated if the hydraulic pump is running. This would
be controlled by the computer program of Figure 16.4(b)
which is identical to the relay circuit needed to control the
cylinder. These programs look like the rungs on a ladder,
and were consequently called `Ladder Diagrams'.
The program was entered via a programming terminal

with keys showing relay symbols (normally open/normally
closed contacts, coils, timers, counters, parallel branches,
etc.), with which a maintenance electrician would be famil-
iar. Figure 16.5 shows the programmer's keyboard for an
early PLC. The meaning of the majority of the keys should
be obvious to any maintenance electrician. The program,
shown exactly on the screen as Figure 16.4(b), would high-
light energised contacts and coils allowing the programming
terminal to be used for simple faultfinding.
The name given to these machines was Programmable

Controllers or PCs. The name Programmable Logic
Controller or PLC was also used, but this is, strictly, a regis-
tered trade mark of the Allen Bradley Company, now part
of Rockwell. Unfortunately in more recent times the letters
PC have come to be used for Personal Computer, and
confusingly the worlds of programmable controllers and
personal computers overlap where portable and lap-top
computers are now used as programming terminals. To avoid
confusion, we shall use PLC for a programmable controller
and PC for a personal computer.

16.1.4 The advantages of PLC control

Any control system goes through several stages from
conception to a working plant.
The first stage is Design when the required plant is

studied and the control strategies decided. With conven-
tional systems every `i ' must be dotted before construction
can start. With a PLC system all that is needed is a possibly
(usually!) vague idea of the size of the machine and the
I/O requirements (so many inputs and outputs). The cost
of the input and output cards are cheap at this stage, so a
healthy spare capacity can be built in to allow for the inevit-
able omissions and future developments.
Next comes Construction. With conventional schemes,

every job is a `one-off ' with inevitable delays and costs.
A PLC system is simply bolted together from standard parts.
The next stage is Installation, a tedious and expensive

business as sensors, actuators, limit switches and operator
controls are cabled. A distributed PLC system (discussed
in Section 16.5) using serial links and pre-built and tested
desks can simplify installation and bring huge cost benefits.
The majority of the PLC program is usually written at this
stage.
Finally comes Commissioning, and this is where the real

advantages are found. No plant ever works first time.
Human nature being what it is, there will be some over-
sights. (We need a limit switch to only allow feeding when
the discharge valve is `shut' or `Whoops, didn't we say the
loading valve is energised to UNLOAD on this system' and
so on.) Changes to conventional systems are time consum-
ing and expensive. Provided the designer of the PLC
systems has built in spare memory capacity, spare I/O and
a few spare cores in multi-core cables, most changes can be
made quickly and relatively cheaply. An added bonus is
that all changes are inherently recorded in the PLC's
program and commissioning modifications do not go
unrecorded.

//integras/b&h/Eer/Final_06-09-02/eerc016

16/6 Programmable controllers

Retract SOV

Extend PB

Retract PB

Retract PB

Extend PB

I01

(a)

(b)

Retract PB

running

Pump
running

Pump
LS

Front
LS

Back

PLC

In
pu

t c
ar

d

O
ut

pu
t c

ar
d

Extend PB

Extend SOV

Extend SOV

Retract SOV

Extend SOV

Retract SOV

Made if
signal
present

Made if
signal
absent

Output
to plant

LS
Back

LS
Front

Figure 16.4

Pump
running

A simple PLC application: (a) a hydraulic cylinder controlled by a PLC; (b) the `Ladder Diagram' program used to control the cylinder

There is an additional fifth stage called Maintenance
which starts once the plant is working and is handed over
to production. All plants have faults, and most tend to
spend the majority of their time in some form of failure
mode. A PLC system provides a very powerful tool for
assisting with fault diagnosis.
A plant is also subject to many changes during its life to

speed production, ease breakdowns or because of changes
in its requirements. A PLC system can be changed so easily
that modifications are simple and the PLC program will
automatically document the changes that have been made.

16.2 The programmable controller

16.2.1 Modern PLC systems

This chapter is written around five manufacturers' ranges:

.	 The Allen Bradley PLC-5 series. Allen Bradley,
now owned by Rockwell, were one of the original PLC
originators (and actually has the US copyright on the
name PLC). They have been responsible for much of
the development of the ideas used in PLCs and have
succeeded in maintaining a fair degree of upward com-
patibility from their earliest machine without restricting
the features of the latest.

.	 The Siemens Simatic 55 range which is probably the
commonest PLC in mainland Europe.

.	 The British GEM-80, originally designed by GEC from
a long association with industrial computers dating
back to English Electric. This part of GEC is now

known as CEGELEC and is part of a French group in
which Alsthom are a major shareholder.

. The ASEA Master System, now manufactured by the
ABB company formed by the merger of ASEA and
Brown Boveri. The Master system has features more akin
to a conventional computer system and its programming
language has some interesting and powerful features.

The above four PLCs are shown on Figure 16.6. Many
PLC systems are now very small and as an example of
this bottom end of the market we shall also consider the
Japanese Mitsubishi F2-40.

16.2.2 I/O connections

Internally a computer usually operates at 5 V d.c. The exter-
nal devices (solenoids, motor starters, limit switches, etc.)
operate at voltages up to 110 V a.c. The mixing of these
two voltages will cause irreparable damage to the PLC
electronics. A less obvious problem can occur from elec-
trical `noise' introduced into the PLC from voltage
spikes, caused by interference on signals lines, or from
load currents flowing in a.c. neutral or d.c. return lines.
Differences in earth potential between the PLC cubicle and
outside plant can also cause problems.
There are obviously very good reasons for separating the

plant supplies from the PLC supplies with some form of
barrier to ensure that the PLC cannot be adversely affected
by anything happening on the plant. Even a cable fault
putting 415 V a.c. onto a d.c. input would only damage the
input card; the PLC itself (and the other cards in
the system) would not suffer.

//integras/b&h/Eer/Final_06-09-02/eerc016

The programmable controller 16/7

1. NumericsÐprovides addresses and decimal or hexadecimal values for instructions. It also provides force instructions.
2. Relay-TypeÐexamines and controls the status of individual bits in specified memory areas.
3. Timer/CounterÐallows the user to select various time-incremented and count-incremented and decremented functions.
4. Data ManipulationÐused to transfer and compare BCD or octal values in the user program.
5. ArithmeticÐperforms the four indicated math functions.
6. EditingÐused to locate, display and change instructions in the user program.
7. ControlÐdirects the operation of the industrial terminal and its communication with the PLC-2 family processors and peripherals. Also provides
HELP information.
8. Block Transfer InstructionsÐused to program block transfer Instructions in block format.
9. Shift RegisterÐused to shift a word (all 16 bits) up or down one word in the shift register file.

± used to shift a bit in the shift register file to the left or right one position.
± used to create FIFO stacks.

10. Sequencer InstructionsÐused to establish and maintain user sequencer tables.
11. File InstructionsÐused to establish and manipulate user files.

Figure 16.5 A programming keyboard from an early PLC programming terminal. The link between the keys and relay symbols can be clearly seen.
Figure courtesy of Allen Bradley

Figure 16.6 Four medium sized PLCs: (a) the Allen Bradley PLC-5; (b) the Siemens 115U; (c) the CEGELEC GEM-80; (d) the ABB Master

//integras/b&h/Eer/Final_06-09-02/eerc016

16/8 Programmable controllers

Figure 16.6 (continued)

//integras/b&h/Eer/Final_06-09-02/eerc016

The programmable controller 16/9

This isolation is achieved by optical isolators consisting
of a linked light emitting diode and photoelectric transistor.
When current is passed through the diode it emits light
causing the transistor to switch on. Because there is no elec-
trical connections between the diode and the transistor, very
good electrical isolation (typically 1±4 KV) is achieved.
A d.c. input can be provided as Figure 16.7(a). When the

push button is pressed, current will flow through D1 caus-
ing TR1 to turn on passing the signal to the PLC internal
logic. Diode D2 is a light emitting diode used as a fault
finding aid to show when the input signal is present. Such
indicators are present on almost all PLC input and output
cards. The resistor R sets the voltage range of the input.
D.c. input cards are usually available for three voltage
ranges; 5 V (TTL), 12±24 V, 24±50 V.
A possible a.c. input circuit is shown on Figure 16.7(b). The

bridge rectifier is used to convert the a.c. to full wave rectified
d.c. Resistor R2 and capacitor C1 act as a filter (typically
50 ms time constant) to give a clean signal to the PLC logic.
As before a neon LP1 acts as an input signal indicator for
fault finding, and resistor R1 sets the voltage range.
Output connections also require some form of isolation

barrier to limit damage from the inevitable plant faults and
to stop electrical ̀ noise' corrupting the processor's operations.
Interference can be more of a problem on outputs because

higher currents are being controlled by the cards and the
loads (solenoids and relay coils) are often inductive.
In Figure 16.8, eight outputs are fed from a common

supply, which originates local to the PLC cubicle (but separate
from the supply to the PLC itself). This arrangement is the
simplest and the cheapest, to install. Each output has its own
individual fuse protection on the card and a common circuit
breaker. It is important to design the system so that a fault,
say, on load 3 blows the fuse FS3 but does not trip the supply
to the whole card shutting down every output. This is known
as `discrimination'.
Contacts have been shown on the outputs in Figure 16.8.

Relay outputs can be used (and do give the required isolation)
but are not particularly common. A relay is an electromagnetic
device with moving parts and hence a finite limited life.
A purely electronic device will have greater reliability.
Less obviously, though, a relay driven inductive load can
generate troublesome interference and lead to early
contact failure.
A transistor output circuit is shown on Figure 16.9(a).

Opto-isolation is again used to give the necessary separation
between the plant and the PLC system. Diode D1 acts as a
spike suppression diode to reduce the voltage spike encoun-
tered with inductive loads as shown on Figure 16.9(b). The
output state can be observed on LED1. Figure 16.9(a) is a

Figure 16.7 Optical isolation of input signals: (a) d.c. input; (b) a.c. input

//integras/b&h/Eer/Final_06-09-02/eerc016

16/10 Programmable controllers

Figure 16.8 Schematic of an 8 way output card with common supply

current sourcing output. If NPN transistors are used,
a current sinking card can be made as Figure 16.9(c).
A.c. output cards invariably use triacs. a typical circuit

being shown on Figure 16.10. Triacs have the advantage
that they can be made to turn on at zero voltage and inher-
ently turn off at zero current in the load. The zero current
turn off eliminates the spike interference caused by breaking
the current through an inductive load. If possible, all a.c.
loads should be driven from triacs rather than relays.
An output card will have a limit to the current it can sup-

ply, usually set by the printed circuit board tracks rather than
the output devices. An individual output current will be set
for each output (typically 2 A) and a total overall output
(typically 6 A). Usually the total allowed for the card current
is lower than the sum of the allowed individual outputs.

16.2.3 Remote I/O

So far we have assumed that a PLC consists of a processor
unit and a collection of I/O cards mounted in local racks.
Early PLCs were arranged like this, but in a large and
scattered plant, all signals had to be brought back to some
central point in expensive multi-core cables. This also
makes commissioning and fault finding rather difficult, as
signals can only be monitored effectively at a point distant
from the plant device being tested.
In all bar the smallest and cheapest systems, PLC manu-

facturers therefore provide the ability to mount I/O racks
remote from the processor, and linked with simple (and
cheap) screened single pair or fibre optic cable. Racks can
then be mounted up to several kilometres away from the
processor.

There are many benefits from this. It obviously reduces
cable costs as racks can be laid out local to the plant devices
and only short multi-core cable runs are needed. The long
runs will only be the communication cables (which are
cheap, easy to install and only have a few cores to terminate
at each end) and hardwire safety signals.
Less obviously, remote I/O allows complete plant units to

be constructed, wired to a built in PLC rack, and tested off
site prior to delivery and installation. Typical examples are
hydraulic skids, desks and even complete control pulpits.
The use of remote I/O in this way can greatly reduce instal-
lation and commissioning time and cost.
The use of serial communication for remote I/O means

some form of sequential scan must be used to read input
and update outputs. This scan, typically 30±50 ms, intro-
duces a small delay in the response to signals discussed
further in the following section.
If remote I/O is used, provision should be made for a

program terminal to be connected local to each rack. It
negates most of the benefits if the designer can only monitor
the operation from a central control room several hundred
metres from the plant. Fortunately, manufacturers have
recognised this and most PLCs have programming
terminals which can be remotely connected to the processor.

16.2.4 The program scan

A PLC program can be considered to behave as a perma-
nent running loop similar to Figure 16.11(a). The user's
instructions are obeyed sequentially, and when the last
instruction has been obeyed the operation starts again at the
first instruction. A PLC does not, therefore, communicate

//integras/b&h/Eer/Final_06-09-02/eerc016

The programmable controller 16/11

Figure 16.9 D.c. output circuits: (a) isolated output circuit, current sourcing; (b) the effect of an inductive load and the reason for including diode
D1; (c) current sinking output

continuously with the outside world, but acts, rather, by
taking `snapshots'.
The action of Figure 16.11(a) is called a program scan,

and the period of the loop is called the program scan time.
This depends on the size of the PLC program and the speed
of the processor, but is typically 2±5 ms per K of program.
Average scan times are usually around 10±50 ms.
Figure 16.11(a) can be expanded to Figure 16.11(b). The

PLC does NOT read inputs as needed (as implied by Figure
16.11(a)) as this would be wasteful of time. At the start of
the scan it reads the state of ALL the connected inputs and
stores their state in the PLC memory. When the PLC pro-
gram accesses an input, it reads the input state as it was at
the start of the current program scan.
As the PLC program is obeyed through the scan, it again

does not change outputs instantly. An area of the PLC's
memory corresponding to the outputs is changed by the

program, then ALL the outputs are updated simultaneously
at the end of the scan. The action is thus:

Read Inputs,
Scan Program,
Update Outputs.

The PLC memory can therefore be considered to consist
of four areas as shown on Figure 16.11(c). The inputs are
read into an input mimic area at the start of the scan, and
the outputs updated from the output mimic area at the end
of the scan. There will be an area of memory reserved for
internal signals which are used by the program but are not
connected directly to the outside world (timers, counters,
storage bits (e.g. fault signals) and so on). These three
areas are often referred to as the data table (Allen Bradley)
or the database (ASEA/ABB).

//integras/b&h/Eer/Final_06-09-02/eerc016

16/12 Programmable controllers

Figure 16.10 A.c. isolated output. The triac switches on at zero voltage and off at zero current which minimises interference

Figure 16.11 The program scan and memory organisation: (a) simple view of PLC operation; (b) more detailed view of PLC operation; (c) memory
organisation

This data area is smaller than may be at first thought.
A medium size PLC system will have around 1000 inputs and
outputs. Stored as individual bits in a PLC with a 16 bit
word this corresponds to just over 60 storage locations. An
analog value read from the plant or written to the plant will
take one word. Timers and counters take two words (one
for the value, and one for the preset) and sixteen internal
storage bits take just one word. The majority of the store
therefore, is taken up by the fourth area, the program itself.
The program scan limits the speed of signals to which a

PLC can respond. In Figure 16.12(a) a PLC is being used to
count a series of fast pulses, with the pulse rate slower than
the scan rate. The PLC counts correctly. In Figure 16.12(b)
the pulse rate is faster than the scan rate and the PLC starts
to miscount and miss pulses. In the extreme case of Figure
16.12(c) whole blocks of pulses are totally ignored.
In general, any input signal a PLC reads must be present

for longer than the scan time; shorter pulses may be read if
they happen to be present at the right time but this cannot
be guaranteed. If pulse trains are being observed, the pulse
frequency must be slower than 1/(2 �(scan period). A PLC
with a scan period of 40 ms can, in theory, just about follow
a pulse train of 1/(2 �(0.04) �(12.5 Hz. In practice other

factors such as filters on the input cards have a significant
effect and it always advisable to be conservative in speed
estimates.
Less obviously, the PLC scan can cause a random `skew'

between inputs and outputs. In Figure 16.13 an input I is to
cause an `immediate' output O. In the best case of Figure
16.13(a), the input occurs just at the start of the scan,
resulting in the energisation of the output one scan period
later. In Figure 16.13(b) the input has arrived just after the
inputs are read, and one whole scan is lost before the PLC
`sees' the input, and the rest of the second scan passes before
the output is energised. The response can thus vary between
one and two scan periods.
In the majority of applications this skew of a few tens of

milliseconds is not important (it cannot be seen, for example,
in the response of a plant to pushbuttons). Where fast actions
are needed, however it can be crucial. If, for example,
material travelling at 15 m/s is be cut to length by a PLC
with the cut being triggered by a photocell a 30 ms scan time
would result in a 0.03 �(15 000 �(450 mm variation in cut
length.
PLC manufacturers provide special cards (which are

really small processors in their own right) for dealing with

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/13

Figure 16.12 The effect of program scan on a fast pulse train

Figure 16.13 The effect of program scan on response time: (a) best case; (b) worst case

this type of high speed application. We will return to these
later in Section 16.4.8
The layout of the PLC program itself can result in undesir-

able delays if the program logic flows against the PLC
program scan. The PLC starts at the first instruction for each
scan, and works its way through the instructions in a
sequential manner to the end of the program when it does
its output update, then goes to read its inputs and run
through the program again.
In Figure 16.14(a), an input I again causes an output O,

but it goes through five steps first (it could be stepping a
counter or seeing if some other required conditions are pre-
sent). The program logic, however, is flowing against the
scan. On the first scan the input I causes event A. On the
next scan event A causes event B and so on until after 5
scans event D causes the output to energise. If the program
had been arranged as Figure 16.14(b) the whole sequence
would have occurred in one single scan.
The failings of Figure 16.14(a) are self-evident, but the

effect can often occur when the layout of the program is
not carefully planned. The effect can also be used deliber-
ately to ensure sequences operate correctly.

The effect of scan times can become even more complex
when remote serially scanned I/O racks are present. These
are generally read by an I/O scanner as Figure 16.15 but the
remote I/O scan is not usually synchronised to the program
scan. In this case with, say, a program scan of 30 ms and a
remote I/O scan of 50 ms the fastest response to an input
could be 30 ms, but the slowest response (with an input
just missing the I/O scan and the I/O scan just missing
the program scan and the programming scan just missing
the I/O scan to update the output) could be 180 ms.
PLC manufacturers offer many facilities to reduce the effect

of scan times. Typical are intelligent high speed independent
I/O cards and the ability to sectionalise the program into
areas with different scan rates.

16.3 Programming methods

16.3.1 Introduction

The programming language of a PLC will be used by engi-
neers, technicians and maintenance electricians. It should

//integras/b&h/Eer/Final_06-09-02/eerc016

16/14 Programmable controllers

Figure 16.14 Compounding of program scan delays: (a) logic flows against the scan, five scan times from input to output; (b) logic flows with
program scan, output occurs in same program scan as input

Figure 16.15 The effect of remote input/output scan times. The remote I/O scan usually free-runs and is not synchronised with the program scan

therefore be based on techniques used in industry rather
than techniques used in computer programming. In this
section we shall look at the various ways of programming
PLCs from different manufacturers.

16.3.2 I/O identification

The PLC program is concerned with connections to the
outside plant, and these input and output devices need to
be identified inside the program. Before we can examine
how the program is written we will first discuss how various
manufacturers treat the I/O.
The earlier Figure 16.3 showed that a medium sized PLC

system consists of several racks each containing cards, with
each card interfacing generally with 8, 16 or 32 devices. I/O
addressing is usually based on this rack/card/bit idea.
The Allen Bradley PLC-5 family has a range of proces-

sors which can address up to 64 racks. Its medium size 5/25
can have up to 8 racks. The rack containing the processor is
automatically defined as rack 0, but the designer can allo-
cate addresses of the other racks (in the range 1±7) by set up

switches. The racks other than rack 0 connect to the proces-
sor via a remote I/O serial communications cable.
Each rack contains 16 card positions which are grouped

in pairs called a `slot'. A 16 card rack thus contains eight
slots, numbered 0±7. A slot can contain one 16 way input
card and one 16 way output card OR two 8 way cards
usually (but not necessarily) of the same type.

The addressing for inputs is

I:Rack Slot/Bit

with bit being 2 digits. Allen Bradley use octal addressing
for bits, so allowable numbers are 00±07 and 10±17. The
address I:27/14 is input 14 (octal remember) on slot 7
in rack 2.

Outputs are addressed in a similar manner:

O:Rack Slot/Bit

so O:35/06 is output 6 in slot 5 of rack 2. Note that if 16
way cards are used an input and an output can have the
same rack/slot/bit address, being distinguished only by the

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/15

I: or the O:. With 8 way cards there can be no sharing or
rack/slot/bit addressing.
The digital I/O in Siemens 115 PLCs is arranged into

groups of 8 bits, called a Byte. A signal is identified by its
bit number (0±7) and its byte number (0±127).

Inputs are denoted

I<byte>.<bit>&

and outputs by

Q<byte>.<bit>.

I9.4 is thus an input with bit address 4 in byte 9, and
Q63.6 is an output with bit address 6 in byte 63.
Like Allen Bradley, Siemens use card slots in one or more

racks. The cards are available in 16 bit (2 byte) or 32 bit
(4 byte) form. A system can be built with local racks con-
nected via a parallel bus cable or as remote racks with a
serial link.
The simplest form of addressing is fixed slot where four

bytes are assigned sequentially to each slot; 0±3 to the first
slot, 4±7 to the next slot and so on. Input I12.4 is thus input
bit 4 on the first byte of the card in slot 3 of the first rack. If
16 bit (2 byte) cards are used with fixed (4 byte) addressing
the upper 2 bytes in each slot are lost.
In all bar the simplest system the user has the ability to

assign byte addresses. This is known as variable slot addres-
sing. The first byte address and the range (2 byte for 16 bit
cards or 4 byte for 32 bit cards) can be set independently for
each slot by switches in the adaptor module in each rack.
Although any legitimate combination can be set up, it is
recommended that a logical order is used.
Siemens use different notations in different countries

with multi-lingual programming terminals. A common
European standard is German, where E (for Eingang or
input) is used for inputs (e.g. E4.7) and A (for Ausgang)
used for outputs (e.g. A3.5).
The GEM-80 again configures its I/O in terms of bits and

slots within racks. The processor rack can contain 8 card
positions, and additional I/O can be connected into 12 posi-
tion racks local to the processor connected via ribbon cable
(called Basic I/O) or remotely via a serial link.
The I/O is addressed in terms of 16 bit words, one word

corresponding to one or two card positions, and the prefix
A being used for inputs and B for outputs. The bit addres-
sing runs in decimal from 0 to 15.

A3.12 is thus input bit 12 in word 3 and

B5.04 is output bit 4 in word 5

A word can only be an input or an output; duplication of
word addresses is not allowed. I/O cards are available in 8
bit, 16 bit and 32 bit form, so one slot can be half a word,
one word or two words according to the cards being used.
Individual slot addresses are set by rotary switches on
the back plane of each rack. The user has a more or less
free choice in this allocation, but as usual it is best to use a
logical sequential progression.
The ABB (originally ASEA) Master system is a more com-

plex system than any we have discussed so far. Its organ-
isation brings the user closer to the computer, and its
language is more akin to the ideas used by programmers.
If the PLCs discussed so far are taken to be represented
by the home computer language BASIC, the ABB Master
is analogous to PASCAL or C. This comparison is actually
closer than might, at first, be thought. BASIC is quick and
easy to use, but can de-generate into a web of spaghetti

programming if care is not taken. PASCAL and C are
more powerful but everything has to be declared and the
language forces organisation and structure on the user.
The I/O cards are NOT identified by position in the rack,

but by an address set on the card by a small plug with solder
links. The I/O addressing does not, therefore, relate to card
position, and a card can, in theory, be moved about without
changing its operation.
The processor memory is arranged as Figure 16.16(a).

The I/O is connected to a processor database, but unlike
PLCs described earlier, the designer can specify different
scan rates for different cards.
The designer also has considerable power over how the

PLC program is organised. This is heavily modularised as
we shall see later, and the user can also specify different
scan rates for different modules of the program.
Figure 16.16(b) indicates the database for one input card.

There are two levels of the definition, the top level relating
to details of the board itself such as address and scan rate,
then lower levels relating to details of each channel on the
board such as its name and whether the signal is to be
inverted. The database holds details for all the I/O which
can then be referenced by the program either by its database
identification (e.g. DI3.1) or by its unique name (e.g.
HydPump2StartPB).
The Mitsubishi F2 range is typical of small PLCs with

input/output connection, power supply and processor all
contained in one unit. The smallest unit, the F2-40 M has 24
inputs and 16 outputs. (It is a characteristic of process control
systems that the ratio input:outputs is generally 3:2.)
The 24 inputs are designated X400±X427 in octal

notation and the 16 outputs Y430±Y447. The apparently
arbitrary numbers are directly related to the storage

Figure 16.16 The ABB Master system: (a) organisation of the
memory; (b) definition of a digital input in the database

//integras/b&h/Eer/Final_06-09-02/eerc016

16/16 Programmable controllers

locations used to hold the image of the inputs and output.
Further addresses are used in larger PLCs in the series.

16.3.3 Ladder logic

Early PLCs, designed for the car industry, replaced
relay control schemes. The symbols used in American relay
drawings, -] [- for a normally open (NO) contact, -] / [-
for a normally closed (NC) contact, and -()- for a plant
output, were the basis of the language. The earlier Figure
16.5 showed the keyboard for a programmer for this type
of PLC; the relationship to relay symbolism is obvious.

Suppose we have a hydraulic unit, and we wish to give a
healthy lamp indication when
The Pump is running (sensed by an auxiliary contact on the

pump starter).
There is oil in the tank (sensed by a level switch which

makes for good level).
There is oil pressure (sensed by a pressure switch which

makes for adequate pressure).

With conventional relays, we would wire up a circuit as
Figure 16.17(a).
To use a PLC, we connect the input signals to an input

card, and the lamp to an output card as Figure 16.17(b). The
I/O notation used is Allen Bradley.
The program to provide the function is shown on Figure

16.17(c). The line on the left can be considered to be a sup-
ply, and the line on the right a neutral. The output is repre-
sented by a coil -()- and is energised when there is a
route from the left-hand rail. Output 0:22/01 will come
on when signals I:21/00, I:21/01 and I:21/02
are all present.
The program is entered from a terminal with keys repre-

senting the various relay symbols. The terminal can also be
used to monitor the state of the inputs and outputs, with
`energised' inputs and outputs being shown highlighted on
the screen.
In Figure 16.18(a), a hydraulic cylinder can be extended

or retracted by operation of two pushbuttons. The notation
this time is for a GEM-80. It is undesirable to allow both
solenoids to be operated together; this will almost certainly
result in blown fuses in the supply to the output card, so
some protection is needed. The program to achieve this is
shown on Figure 16.18(b).
Normally closed contacts -]/[- have been used here.

Output B2.9, the extend solenoid, will be energised when
the extend pushbutton is pressed, providing the retract sole-
noid is not energised or the retract button pressed, and the
extend limit switch has not been struck.
There are two points to note on Figure 16.18. Contacts

can be used from outputs as well as inputs, and contacts
can be used as many times as needed in the program.
Figure 16.18 also shows the origin of the name `Ladder
Program'. A program in this form looks like a ladder, with
each instruction statement forming a `rung' and the power
rail and neutral the supports. The term `rung' is invariably
applied to the contacts leading to one output.
Let us return to the hydraulics healthy light of Figure

16.17 and add a lamp test pushbutton (a useful feature
that should be present on all panels. It not only allows
lamps to be tested, but can also be used to check the PLC
and the local rack are healthy). To do this we add the lamp
test pushbutton to the PLC and modify the program to
Figure 16.19.
Here we have added a branch, and the output will

energise if our three plant signals are all present OR the

Figure 16.17 From a relay circuit to a PLC program: (a) basic non
PLC circuit; (b) wiring of I/O to a PLC; (c) the corresponding PLC
program

Figure 16.18 Ladder diagram in GEM-80 notation: (a) input/output
connections; (b) GEM-80 ladder diagram

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/17

Figure 16.19 Adding a lamp test pushbutton with a branch

lamp test button is pressed. The way in which the branch is
programmed need not concern us here as it varies between
manufacturers. Some use start branch and end branch keys
(the keypad shown earlier on Figure 16.5 uses this method,
the corresponding keys can readily be identified). Others
use a branch from/to approach. All are simple to use.
A further use of a branch is shown on Figure 16.20. This

is probably the commonest control circuit, a motor starter,
shown using Siemens notation. The operation is simple,
pressing the start pushbutton causes the output Q8.2 to
energise, and the contact of the output in the branch keeps
the output energised until the stop button is pressed. The
program, like its relay equivalent, remembers which button
was last pressed.
There is, however, a very important point to note about

the pushbutton wiring and the program. For safety, a nor-
mally closed stop button has been used giving an input
signal on I12.5 when the stop button is NOT pressed.
A loss of supply to the button, or a cable fault, or dirt under
the contacts will cause the signal to be lost making the pro-
gram think the stop PB has been pressed causing the motor
to stop. If a normally open stop PB has been used, the PLC
program could easily be made to work, but a fault with the
stop button or its circuit could leave the motor running with
the only way of stopping it being to turn off the PLC or the
motor supply.
This topic is discussed further in Section 16.7.4, but note

the effect on the program in Figure 16.20. The sense of the
stop button input (I12.5) inside the program is the oppo-
site of what would be expected in a relay circuit. The input
is really acting as `Permit to Run' rather than `Stop'.

16.3.4 Logic symbols

Logic gates are widely used in digital systems (including the
boards used inside PLCs). The circuits on these boards are
represented by logic symbols, and these symbols can also be
used to represent the operations of a PLC program. Logic
symbols are used by Siemens and ABB; initially we will use
Siemens notation.
The output from an AND gate, shown on Figure

16.21(a), is TRUE if (and only if) all its inputs are TRUE.
The operation of the gate of Figure 16.21(a) can be repre-
sented by the table of Figure 16.21(b). In Figure 16.21(c)
we have the hydraulics healthy lamp of Figure 16.19
programmed using logic symbols for a Siemens PLC.
The output block, denoted by equals �(, is energised when
its input is true, so the lamp Q8.2 is energised (lit) when all
the inputs to the AND gate are true.
Often a test has to be made to say a signal is NOT true.

This is denoted by a small circle `o'. In the earlier Figure

Figure 16.20 A simple motor starter in Siemens notation: (a) input/
output connections; (b) the ladder diagram. Note how the stop button
appears in the program

16.18 we illustrated the control of a hydraulic cylinder with
a program which prevented the extend and retract solenoids
from being energised simultaneously. This is shown
programmed with logic symbols for a Siemens PLC in
Figure 16.22. Note the NOT inputs on each AND gate.
The output of an OR gate, Z in Figure 16.23(a), is TRUE if

any of its inputs are TRUE. The inverse of a signal can be
tested, as before, with a small circle `o'. The output Z of the

Figure 16.21 PLC programming using logic symbols: (a) an AND
gate; (b) truth table for a three input AND gate; (c) the healthy lamp of
Figure 16.17 using a logic symbol in Siemens notation

//integras/b&h/Eer/Final_06-09-02/eerc016

16/18 Programmable controllers

Figure 16.22 The hydraulic cylinder of Figure 16.18 in logic notation
and Siemens addressing. Note the use of inverted inputs (denoted by
small circles)

gate in Figure 16.23(b) is TRUE if A is TRUE or B is FALSE
or C is TRUE. In Figure 16.23(c) we have used an OR gate to
add a lamp test to our hydraulic healthy lamp.
The circuit of Figure 16.23(c) is an AND/OR combina-

tion. The ABB Master has logic combination blocks as
well as the basic gates. Figure 16.24(a) is the Master block
corresponding to Figure 16.23(c) (with a Master program
referring to the names in its database). Similarly, for an
OR/AND combination the OR/AND block of Figure
16.24(b) can be used in a Master program.

16.3.5 Statement list

A statement list is a set of instructions which superficially
resemble assembly language instructions for a computer.
Statement lists, available on the Siemens and Mitsubishi
range, are the most flexible form of programming for the
experienced user but are by no means as easy to follow as
ladder diagrams or logic symbols.

Figure 16.24 ABB Master composite gates: (a) AND/OR gate
(equivalent to Figure 16.23(c)); (b) OR/AND gate

Figure 16.25 shows a simple operation in both ladder and
logic formats for a Siemens PLC. The equivalent statement
list would be:

Instruction Operation Address number Comment
00 :A I 3.7 Forward

Pushbutton
01 :A I 3.2 Front Limit

OK
02 :AN Q 4.2 Reverse

Solenoid
03 : �(Q 4.11 Output to

Forward
Solenoid

Figure 16.23 The OR Gate: (a) logic symbol; (b) OR gate with inverted input; (c) lamp test added to Figure 16.21(c)

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/19

=

I3.7
I3.7 I3.2 Q4.2 Q4.11

|– –] [– –––] [––––] / [––––()– –| I3.2

Q4.2

&

Figure 16.25 Equivalent ladder and logic statements in Siemens notation

I2.7 Q4.4
+– –]/[– –+––––()––I

I2.7

F3.6
 F3.6+ – –] [– –+

Q4.2Q4.2
+– –]/[– –+

Figure 16.26 OR gate equivalence in Siemens notation

Here :A denotes AND, :AN denotes AND-NOT and
: �(sends the result to the output address Q4.11.
An OR operation is shown on Figure 16.26. The equiva-

lent statement list is:

Instruction Operation Address number	 Comment
00 :ON I 2.7	 Local Pump

Running
01	 :O F 3.6 Remote Pump

Running
02	 :0N Q 4.2 Local Pump

Starter
03 : �(Q 4.4 Pump Healthy

Lamp

where ON denotes OR-NOT and O denotes OR.
Where a set of statements can be anomalous, brackets can

be used to define the operation precisely. This is similar to the
use of brackets in conventional programming where
the sequence 3 � 5/2 can be written as (3 � 5)/2 �(4 or
3 �((5/2) �(5.5.
Although the latter is the default assumed by a program,

the brackets do make the operation clear to the reader.
Figure 16.27 shows a typical operation, as usual in both

logic and ladder diagram format. The equivalent statement
list is:

Instruction Operation Address Comments
00 :A(Open First Set of

Brackets
01 :O F 3.3 Forward from desk 1
02 :O F 3.4 Forward from desk 2
03 :) Result of first set

of brackets
04	 :A(AND Result with

second set of
brackets

05 :A I 2.0 Motor 1 Selected
06 :A I 2.1 Motor 2 Selected
07 :) Now at point X
08 :A I 4.1 Front Limit Switch

Healthy
09 :AN Q 5.5 Reverse Starter
10	 : �(Q 5.6 Output to Forward

Starter

Computer programmers will recognise this as being simi-
lar to the operation of a stack with the brackets pushing
data down, or lifting data up, the stack.

Q4.11

Q4.4

=

Figure 16.27 More complex statements in ladder and logic notations

The Mitsubishi PLC also uses statement lists, although
the manual recommends the designer to construct a ladder
diagram first then translate it into a statement list. The PLC
system shown in Figure 16.28 with Mitsubishi notation
becomes the statement list:

Instruction Operation Address Comments
0 LD X401 LD starts rung or

branch
1 AND X402 Xnnn are inputs
2 ANI X403 ANI is And-Not
3 LD Y430 LD starts a new

branch leg
4 AN M100 Mnnn are internal

storage
5 ORB OR the two branch

legs
6 AND M101
7 OUT Y430 End of Rung

//integras/b&h/Eer/Final_06-09-02/eerc016

16/20 Programmable controllers

Figure 16.28 A rung in a Mitsubishi ladder program

16.3.6 Bit storage

As well as inputs and outputs, the PLC will need to hold
internal signals for data such as `Standby Pump Running',
`System Healthy', `Lubrication Fault' and so on. It would
be very wasteful to allocate real outputs to these signals, so
all PLCs provide some form of internal bit storage. These
are known variously as Auxiliary Relays, (Mitsubishi),
Flags (Siemens), General Workspace (GEM-80) and Bit
Storage (Allen Bradley). The notation used within the pro-
grams vary, of course, from manufacturer to manufacturer.
Mitsubishi use Mnnn with nnn representing numbers

within the predefined area M100 to M377 octal. Like most
small PLCs the memory layout is fixed and cannot be
defined by the user. In the other, larger, PLCs we discuss,
the user can define how many storage bits are needed.
The Siemens notation is F <Byte>.<Bit>& (e.g. F27.06).
The GEM-80 has a variety of general work space. The

commonest is called the G table, and appears in programs
as G<Word>.<Bit>& (e.g. G52.14). The G table is
cleared when the PLC goes from a stopped state to a run
state. Storage in the R table (e.g. R12.03) retains its state
with the processor halted or with power removed.
Bit storage in the PLC-5 is denoted by B3/n where

n denotes the signal (e.g. B3/192). The B denotes bit
storage and the 3 is mandatory and arises out of the way
the PLC-5 holds data in files. Bit storage is file 3; timers
are file 4 (T4) and counters file 5 (C5) as we shall see later.
The ABB Master programming language does not really

require internal storage bits, the function being provided by
elements and connections within its database and the pro-
gramming language.
Some form of memory circuit is needed in practically

every PLC program. Typical examples are catching a fleet-
ing alarm and the motor starter of the earlier Figure 16.20
where the rung remembers which button (start or stop) has
been last pressed. These are known, for obvious reasons, as
storage circuits.
The commonest form is shown in ladder and logic form

in Figure 16.29(a). Here output C is energised when input A is
energised, and stays energised until input B is de-energised.
The operation is summarised on Figure 16.29(b). As can

be seen input B overrides input A, the action required of a
start/stop circuit. In some circuits, however, the start is
required to override the stop. We all have a typical example
in our motor cars; the windscreen wipers run when we
switch them on, but continue to run to the park position
when we turn them off. The PLC equivalent is Figure
16.29(c), where A would be the run switch, B the park limit
switch and C the wiper motor. B has again been shown
energised to allow running. The operation is summarised
on Figure 16.29(d).
Storage is provided in digital systems by a device called a

flip flop shown on Figure 16.30(a). This has two inputs, S
(for Set) and R (for Reset). The device remembers which
input was last energised. If both inputs occur together, the

top (S) input wins. Such a circuit is called an SR flip flop.
If the device is drawn with the R input at the top, as
Figure 16.30(b), the reset input will override the set input if
both are present together.
The flip flop is used in logic symbol PLC programming.

A motor starter using a Siemens PLC is shown in Figure
16.31. Note that the RS version has been used to ensure
the stop logic overrides the run logic, and the stop signal
acts as a permit to run.
The ABB Master uses an almost identical symbol for

the flip flop, with the addition that there are five versions.
The first of these is the simple SR type shown earlier in
Figure 16.30. The other versions are based on the fact that
flip flops are invariably preceded by AND/OR combination
of which Figure 16.31 is typical. The additional flip flops
are one unit blocks consisting of a flip flop with built in
AND/OR gates of user defined size. Figure 16.32 for
example, is an ABB SRAO with an AND gate on the set
input and an OR gate on the reset inputs. Other units are
SRAA (AND/AND), SROA and SROO.
In Allen Bradley ladder diagrams, program clarity can

be improved by the use of latch and unlatch outputs shown
on Figure 16.33(a). These work on the same bit, setting the
bit when the latch -(L)- is energised and resetting the bit
when the -(U)- is energised. When both latch and unlatch
are de-energised the bit holds its last state.
The Mitsubishi F2 uses a similar idea, but calls them S

and R outputs as Figure 16.33(b). This would be coded
into a statement list:

0 LD X400
1 OR X401
2 S Y432 Set Output
3 LDI X402
4 ORI X403
5 R Y432 Reset Output

With both the Allen Bradley latch/unlatch, and the
Mitsibushi set/reset, the priority goes to which ever is last
in the program because of the program scan. Both the
examples of Figure 16.33 correctly give priority to the
stop signals.
Power failure or halting of the PLC can cause a problem

with storage. When the PLC restarts should a memory
bit hold the state it was in before the PLC halted, or should
the memory be cleared? This is always a question of safety
and convenience. A water pump in a pump house by a
river 5 km from the main site should probably be allowed
to restart itself if it was running before the power fail, an
automatic stamping machine should almost certainly not
restart.
The PLC manufacturers therefore allow the designer to

choose whether a storage bit holds its state after a power
fail (called retentive memory) or is cleared when the PLC is
first run (called non retentive memory).
In the Allen Bradley PLC-5, this is determined by the

circuit; the simple coil of Figure 16.29 is non retentive, the
latch/unlatch of Figure 16.33(a) is retentive.
Other PLCs use the bit address. On a Siemens 115, flag

addresses F0.0-F127.7 can be made retentive. On the
Mitsubishi PLC, auxiliary relays M100-277 are non
retentive, and M300-M377 are retentive. In the GEM-80,
the general bit storage G Table is non retentive, a similar R
Table is retentive, so a circuit similar to Figure 16.29
constructed with R3.4 as the coil and retaining contact
would hold its state after a power failure.

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/21

Figure 16.29 Bit storage programs: (a) commonest storage program, stop B overrides start A; (b) operation of (a), (c) Program where start A
overrides stop B; (d) operation of (c)

Figure 16.30 The two types of flip flop storage: (a) the SR flip flop, Set overrides R; (b) the RS flip flop, reset overrides set

//integras/b&h/Eer/Final_06-09-02/eerc016

16/22 Programmable controllers

Figure 16.31 Flip flop storage is commonly preceded by logic gates.
Here either stop button will reset the flip flop. Note the circles on the
stop button inputs denoting inverted inputs. These are necessary
because the stop buttons give a signal in the not pressed state

Figure 16.32 An ABB master SRAO composite flip flop

Figure 16.33 Other forms of storage: (a) the Allen Bradley latch/
unlatch; (b) the Mitsubishi set/reset

The ABB Master uses a very structured PLC language,
and forces a disciplined style on the programmer. The nat-
ure of sub elements such as memories and their behaviour
when the PLC is first run is defined when the program
elements are first declared.
Retentive storage can be very hazardous as plants can

unexpectedly leap into life after a power fail. The designer
should take care that the design does not accidentally intro-
duce retentive features by an inadvertent selection of bit
addresses.

Figure 16.34 Different forms of timer: (a) the on-delay. This is the
commonest timer and is often the only type available in many smaller
PLCs; (b) the off-delay; (c) the fixed width pulse, often called a mono-
stable

16.3.7 Timers

Time is nearly always a part of a control system. A typical
example is: `Lift Parking Brake, wait 0.5 seconds for brake to
lift, drive to forward limit and stop drive, wait 1 second and
apply parking brake'. A PLC system must therefore include
timers as part of its programming language. There are many
types of timer, some of which are shown on Figure 16.34
By far the commonest is the on-delay of Figure 16.34(a).

All the other timer blocks can be built with this block and
a bit of thought. A 0 to 1 transition is delayed for a preset
time T, but a 1 to 0 transition is not delayed at all. An input
signal shorter then T is ignored. The GEM-80 has only this
type of timer, calling it a delay.
The off-delay of Figure 16.34(b) passes a 0 to 1 transition

instantly but delays the 1 to 0 transition. A common use of
the off-delay is to remove contact bounce or noise from an
input signal. An off-delay can be obtained from an on-delay
by using the inverse of the input signal and taking the
inverse of the timer output signal (although the resulting
program lacks some clarity).

Figure 16.34(c) is an edge triggered pulse timer, this gives
a fixed width pulse for every 0±1 transition at the timer
input. The PLC-5 has a Onescan pulse timer which pro-
duces a pulse lasting one (and only one) program scan.
Pulses are useful for resetting counters or gating some
information from one location to another.

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/23

Figure 16.35 Allen Bradley timer notations: (a) EN, TT and DN for an on-delay (TON) timer; (b) EN, TT and DN for an off-delay (TOF) timer

A timer of whatever type has some values that need to
be set by the user. The first of these is the basic unit of
time (i.e. what units the time is measured in). Common
units are 10 ms, 100 ms, 1 s, 10 s, and 100 s. The base unit
does not affect the accuracy of the timer; normally the
accuracy is similar to the program scan.
Next the timer duration (often called the preset) is

defined. This is normally set in terms of the time base; a
timer with a preset of 15 and a time base of 100 ms will
last 1.5 s for example. In small PLCs this preset can only
be set by the programmer, in the larger PLCs the duration
can be changed from within the program itself. A delay off
timer used to apply a parking brake, for example, could
have different preset times dependent on whether the drive
concerned is travelling at low speed or high speed.
When a timer is used there are several signals that may be

available. Figure 16.35 shows the signals given for a PLC-5
delay on timer (called a TON) and a delay off timer (called a
TOF).

EN (for enable) is a mimic of the timer input.

TT (for timer timing) is energised whilst the time is running.

DN (for done) says the timer has finished.

In larger PLCs the elapsed time (often called the
Accumulated Time) may be accessed by the program for
use elsewhere (a program may be required to record how
long a certain operation takes).
PLC manufacturers differ on how a timer is pro-

grammed. Some, such as the GEM-80, treat the timer as a
delay block similar to the earlier Figure 16.34(a) with the
preset being stored in a VALUE block.
Siemens use a similar idea, but have different types of

timer. The PLC-5, however, uses the timer as a terminator
for a rung, with the timer signals being available as contacts
for use elsewhere.
Figure 16.36 shows a typical application programmed for

a PLC-5 and a GEM-80 in ladder logic and a Siemens 115-U
using logic symbols. The program controls a motor starter
which is started and stopped via push buttons. The motor
starter has an auxiliary contact which makes when the
starter is energised, effectively saying the motor is running.
If the drive trips because of an overload, or because an
emergency stop is pressed, or there is a supply fault, the
auxiliary contact signal will be lost. The contact cannot,
however, be checked until 0.5 s after the starter has
been energised to allow time for the contact to pull in.
The program in each case checks the auxiliary contact

and signals a drive fault if there is a problem. Note the dif-
ference in the way the timer is used and the fault signal is
stored.
The accumulated time in the timers discussed so far goes

back to zero each time the input goes to a zero. This is
known as a non retentive timer. Most PLC timers are of
this form. Occasionally it is useful to have a timer which
holds its current value even though the input signal has
gone. When the input occurs again the timer continues
from where it stopped. This, not surprisingly, is known as
a retentive timer. A separate signal must be used to reset
the timer to zero. If a retentive timer is not available on a
particular PLC, the same function can be provided with
a counter, a topic discussed in the next section.
A typical timer can count up to 32 767 base time units

(corresponding to 15 binary bits). Some older PLCs work-
ing in BCD can only count to 999. With a one second time
base the maximum time will be just over 546 minutes or
about 9 hours. Where longer times are needed, (or times
with a resolution better than one second) timers and coun-
ters can be used together as described in the next section.

16.3.8 Counters

Counting is a fundamental part of many PLC programs.
The PLC may be required to count the number of items in
a batch, or record the number of times some event occurs.
With large motors, for example, the number of starts have
to be logged. Not surprisingly all PLCs include some form
of counting element.
A counter can be represented by Figure 16.37(a), although

not all PLCs will have all the facilities we will describe. There
will be two numbers associated with the counter. The first is
the count itself (often called the accumulated value) which will
be incremented when a 0->1 transition is applied to the
count up input, or decremented when a 0->1 transition is
applied to the count down input. The accumulated value
(i.e. the count) can be reset to zero by applying a 1 to the reset
input. Like the elapsed time in a timer, the value of the count
can be read and used by other parts of the program.
The second number is the preset which can be considered

as the target for the counter. If the count value reaches the
preset value, a count complete or count done signal is given.
The preset can be changed by the program, a batching
sequence, for example, may require the operator to change
the number of items in a batch by a keypad or VDU entry.

//integras/b&h/Eer/Final_06-09-02/eerc016

16/24 Programmable controllers

Figure 16.36 The same timer based application programmed on
three different machines: (a) Allen Bradley PLC-5 TON Timer;
(b) GEM-80 delay block; (c) Siemens S5 in logic notation

Similarly a signal zero count is sometimes available. The
operation can be summarised as Figure 16.37(b).
PLC manufacturers handle counters, like timers in

slightly different ways. The PLC-5 and the Mitsubishi use
count up (CTU) count down (CTD) and reset (RES)
as rung terminators with the count done signal
(e.g. C5:4.DN) available for use as a contact.
The Siemens S5, ABB Master and the GEM-80 treat

a counter as an intermediate block in a logic diagram
or rung from which the required output signals can be used.
Figure 16.38 shows a simple count application performed

by a PLC-5, a Siemens S5 and a GEM-80. Items passing
along a conveyor are detected by a photocell and counted.
When a batch is complete, the conveyor is stopped and a

batch complete light is lit for the operator to remove the
batch. When he does this, a restart button sets the sequence
running again.
As we saw with timers, most PLCs allow a counter

to count up to 32 767. Where larger counts are needed,
counters can be cascaded with the complete (or done) signal
from the first counter being used to step the second counter
and reset the first. Figure 16.39 is a variation on the same
idea used to give a very long timer. It is shown for a PLC-5,
but the same idea could be used on any PLC.
The first rung generates a free running one scan pulse with

inter pulse period set by the timer period. (When the timer
has not timed out, the DN signal is not present and the timer
is running. When it reaches the preset, the DN signal occurs,
resetting and restarting the timer.) The resulting one second
pulse is counted by successive counters to give accumulated
seconds/minutes/hours/days. As each counter reaches its
preset it steps the next counter and resets itself.
Long duration timers built from counters are normally

retentive (i.e. they hold their value when the controlling
event is not present). They can be made non retentive
by resetting the counters when the controlling event is not
present, but this is rarely required.

16.3.9 Combinational logic

Any control system based on digital signals can be repre-
sented by Figure 16.40(a), where a system has a set of out-
puts Z, Y, X, W, etc. whose state is determined by inputs A,
B, C, D, etc. The control scheme can operate in a combina-
tion of two basic manners.
The simplest of these is combinational logic where the

scheme can be broken down into smaller blocks as Figure
16.40(b) with one output per block, with each output state
being determined solely by the corresponding input states.
The loading valve for a hydraulic pump, for example, is to
be energised when

The pump is running
AND(Raise is selected AND top limit SW
is not struck)
OR (Lower is selected AND bottom limit
SW is not struck)

The operation of this loading valve can be implemented
with the simple ladder or logic program of Figure 16.41,
but it is worth developing a standard way of producing a
combinational logic program.
The first stage is to break the control system down into a

series of small blocks, each with one output and several
inputs. For each output we now draw up a so called truth
table in which we record all the possible input states and the
required output state. In Figure 16.42(a) we have an output
Z controlled by four inputs A, B, C, D. There are sixteen
possible input states, and Z is energised for four of these.
This can be translated directly into the ladder diagram of
Figure 16.42(b) or the logic circuit of Figure 16.42(c), with
each rung branch and or gate corresponding to one row in
the truth table. The use of a truth table method for the
design of combinational logic circuits leads directly to an
AND/OR arrangement called, technically, a Sum of
Products (S of P) circuit.

16.3.10 Event driven logic and SFCs

The states of outputs in combinational logic are determined
solely by the input signals. In event driven logic (also known

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/25

Figure 16.37 The up/down counter: (a) counter diagram; (b) counter operation

as a sequencer) the state of an output depends not only
on the state of the inputs, but also on what was occurring
previously. It is not therefore possible to draw a truth table
from which the required logic can be deduced.
Consider, for example, the simple motor starter circuit of

Figure 16.43(a). With neither button pressed, the motor
could be running or stopped depending on what occurred
last. The operation can be described by Figure 16.43(b)
which is known as a state transistion diagram, (often
shortened to state diagram).
The square boxes are the states the system can be in; the

motor can be running or stopped, and the arrows are the
transitions that cause the system to change states. If the motor
is running, pressing the stop button will cause the motor to
stop. A bar above a signal (e.g. above stop PB OK) means
signal not present; note the wiring of the stop PB and the signal
sense. It is a useful convention to label states with numbers and
transitions with letters.
State transition diagrams can be constructed from

storage elements, with one less storage element than there
are states, and the one default state being inferred by the
absence of others. It therefore requires just one storage ele-
ment (latch, SR flip flop or whatever) to implement the
motor starter of Figure 16.43.
Figure 16.44 is a more complex example (based on a real

silo). A preset weight of material is fed into a weigh hopper
ready for the next discharge, which is initiated by a

Discharge pushbutton. A hood then lowers (to reduce dust
emissions) and the material discharges. After the discharge,
the hood retracts and the weighhopper re-fills. An abort
pushbutton stops a discharge, and a feed permit switch
stops the feed.
There are two fault conditions; failure to get the batch

weight in a given time (probably caused by material
jamming in the feeder) and failure to get zero weight from
the discharge (again in a given time and again probably
caused by a material jam). Both of these trip the system
from automatic to manual operation to allow the cause of
the fault to be determined.
We can now draw the state diagram of Figure 16.44(b).

The default state is the state that the system will enter from
manual, and care needs to be taken in its selection. Here
feed is the sensible choice; if the hopper if already full the
system will immediately pass to state 1 (ready), if not, the
hopper will be filled. The choice of any other state as default
could lead to a wasted cycle through all the states with no
material in the weigh hopper.
We can now construct a table linking the outputs to the

states. This is straightforward and is given on Figure 16.44(c).
The next stage is to translate this state diagram into a

PLC program. The programming method relies very much
on the idea of the program scan, described earlier in Section
16.2.4. By breaking down the program for our state
diagram into four areas as Figure 16.45 we can control the

//integras/b&h/Eer/Final_06-09-02/eerc016

16/26 Programmable controllers

Figure 16.38 A simple batch counter programmed on three different
machines: (a) Allen Bradley PLC-5; (b) GEM-80; (c) Siemens S5 in
logic notation

order in which each stage operates. The actual layout is not
critical, but it is essential for transitions and states to be
kept separate and not mixed.
Automatic/manual selection comes first, this is achieved

with the simple rung of Figure 16.46. Automatic mode is
only allowed if there are no faults and the hood is raised.

Figure 16.39 Cascading counters to give a long delay. Allen Bradley
PLC-5 notation has been used

Next come the transitions, some of which are shown
on Figure 16.47. These are straightforward and need little
comment. Note that the first contact in each rung is a state,
so inputs are only examined at the correct point in a sequence.
Some of the states themselves are given in Figure 16.48.

With the exception of state 0, simple latches have been used
throughout for the states and the auto/man selection so that
after a power failure the system will resume in manual
mode. Note that these are set and reset by the transitions.
Finally we have the outputs themselves on Figure 16.49.

An output is energised during the corresponding state(s) in
automatic or from the manual maintenance push button in
manual.
The state diagram technique is very powerful, but it can

lead to confusion if the basic philosophy is not understood.
The often quoted argument is it takes more rungs or logic
elements than a direct approach programmed around the
outputs.
This is true, but programming around the outputs can

lead to very twisted and difficult to understand programs.
Figure 16.50 is one rung roughly corresponding to state 2 of
our state diagram. It mixes manual and automatic opera-
tion and its action is by no means clear (known colloquially
as Spaghetti programming). Problems can arise where tran-
sitions go against the program scan as transition E on the
earlier Figure 16.44(b). If care is not taken, a sequence based

//integras/b&h/Eer/Final_06-09-02/eerc016

Programming methods 16/27

Figure 16.40 Combinational Logic: (a) top level view; (b) broken down into smaller blocks, each with one output, for programming

Figure 16.41 Combinational logic in ladder and logic notations. Both
perform the same function

purely on outputs can easily end up doing two things at
once, or nothing at all because of the way the program
scan operates. Modifications are also tricky with a direct
approach, but simple with a state diagram.
State diagrams are being formalised by the International

Electrotechnical Commission and the British Standards
Institute, and already exist with the French Standard
Grafset. These are basically identical to the approach out-
lined above, but introduce the idea of parallel routes which
can be operated at the same time. Figure 16.51(a) is called a
divergence, state 0 can lead to state 1 for condition s OR to
state 2 for condition t with transitions s and t mutually exclu-
sive. This is the form of the state diagrams described so far.
Figure 16.51(b) is a simultaneous divergence, where state 0will

lead to state 1 AND state 2 simultaneously for transition u.
States 1 and 2 can now run further sequences in parallel.
Figure 16.51(c) again corresponds to the state diagrams

described earlier, and is known as a convergence. The

sequence can go from state 5 to state 7 if transition v is
true OR from state 6 to state 7 if transition w is true.
Figure 16.51(d) is called a simultaneous convergence (note

again the double horizontal line) state 7 will be entered if
the left-hand branch is in state 5 AND the right-hand
branch is in state 6 AND transition x is true.
The state diagram is so powerful that most medium size

PLCs include it in their programming language in one form
or another. Telemecanique give it the name Grafcet (with a
`c'), others use the name Sequential Function Chart (SFC)
(Allen Bradley) or Function Block (Siemens). We will
return to these in the next chapter.
Even the simple Mitsubishi F2 supports state diagrams

with its STL (Stepladder) instruction. These have the prefix
S and can range from S600 to S647. They have the charac-
teristic that when one or more are set, any others energised
are automatically reset. A RET instruction ends the
sequence. The state diagram of Figure 16.52(a) thus
becomes the ladder diagram of Figure 16.52(b).
Where there are no branches and the sequence is a simple

ring (operating rather like a uniselector) a sequence can be
driven by a counter which selects the required step. The
counter is stepped when the transitions for the current step
are met. The GEM-80 has a SEQR (sequence) instruction
which acts as a sixteen step uniselector.

16.3.11 IEC 1131

We have seen that PLCs can be programmed in several
different ways. In recent years the International
Electrotechnical Commission (IEC) have been working
towards defining standard architectures and programming
methods for PLCs. The result is IEC 1131, a standardised
approach which will help at the specification stage and
assist the final user who will not have to undergo a mind-
shift when moving between different machines.
The earliest, and probably still the commonest, program-

ming method described is the Ladder Diagram (or LD in
IEC 1131).
Function Block Diagrams (FBDs) use logic gates (AND/

OR etc.) for digital signals and numeric function blocks
(arithmetic, filters, controllers, etc.) for numeric signals.
FBDs are similar to PLC programs for the ABB Master
and Siemens SIMATIC families. There is a slight tendency
for digital programming to be done in LD, and analog
programming in FBD.

//integras/b&h/Eer/Final_06-09-02/eerc016

16/28 Programmable controllers

Figure 16.42 Building combinational logic from a truth table: (a) truth table; (b) Direct conversion to a ladder program. Each row in the truth table
which makes Z �(1 is represented by one level on the branch; (c) Direct conversion to a logic diagram. Each row in the truth table which makes Z �(1
is represented by an AND gate. The AND gate outputs are then OR'd together

Figure 16.43 A simple state transition diagram; (a) A motor starter; (b) State transition diagram. Note that with no buttons pressed the system can
be in either state

//integras/b&h/Eer/Final_06-09-02/eerc016

Numerics 16/29

Figure 16.44 A more complex state transition diagram for a real plant: (a) physical layout; (b) state transition diagram; (c) output table

Many control systems are built around state transition
diagrams, and IEC 1131-3 calls these Sequential Function
Charts (SFCs). The standard is based on the French
Grafcet standard shown earlier on Figure 16.51.
Finally are text based languages. Structured Text (ST)

is a structured high level language with similarities
to Pascal and C. Instruction List (IL) contains simple
mnemonics such as LD, AND, ADD etc. IL is very close
to the programming method used on small PLCs where the
user draws a program up in ladder form on paper, then
enters it as a series of simple instructions.
Figure 16.53 illustrates all of these programming methods.
A given project does not have to stick with one method,

they can be intermixed. A top level, for example, could be
an SFC, with the states and transitions written in ladder
rungs or function blocks as appropriate.

It will be interesting to see the effect of IEC 1131-3. Most
attempts at standardisation fail for reasons of national and
commercial pride. MAP, and latterly fieldbus, have all had
problems in gaining wide acceptance. A standard will be
useful at the design stage, and could be accepted by the
end user if programming terminals presented a common
face regardless of the connected machine.

16.4 Numerics

16.4.1 Numerical applications

So far we have been primarily discussing single bit opera-
tions. Numbers are also often part of a control scheme; a
PLC might need to calculate a production rate in units per

//integras/b&h/Eer/Final_06-09-02/eerc016

16/30 Programmable controllers

Figure 16.45 The program scan and the layout of a state transition
diagram program

Figure 16.46 Auto/manual selection

Figure 16.47 The first three transitions

hour averaged over a day, or give the amount of liquid in a
storage tank. Such operations require the ability to handle
numeric data.

16.4.2 Numeric representations

Most PLCs work with a 16 bit word, allowing a positive
number in the range 0 to �65 535 to be represented, or a
signed (positive or negative) number in the range �32 768
to �32 767. In the latter case, known as two's complement,
the most significant bit represents the sign, being 1 for nega-
tive numbers and 0 for positive numbers.
Numbers such as these are known as integers, and can

only represent whole numbers in the above range. Where lar-
ger whole numbers are required, two sixteen words can be
used allowing a range �2 147 483 648 to �2 147 483 647.
This type of integer is available in the ABB Master (where it
is known as a long integer) and the 135-U and 155-U in
the Siemens family (where the term double word integer is
used).
Where decimal fractions are needed (to deal with a tem-

perature of 45.6 �C for example) a number form similar to
that found on a calculator may be used. These are known as
real or floating point numbers, and generally consist of two
sixteen bit words which contain the mantissa (the numerical
portion) and the exponent. In base ten, for example, the
number 74 057 would have a mantissa of 7.4057 and an
exponent of 4 representing 104. PLCs, of course, work in
binary and represent mantissa and exponent in two's com-
plement form.
Real numbers are very useful but their limitations should

be clearly understood. There are two common problems.
The first occurs when large numbers and small numbers
are used together. Suppose we had a system operating to
base ten with four significant figures, and we wish to add
857 800 (stored as 8.578E5) and 96 (stored as 9.600E1).
Because the smaller number is outside the range (four sig-
nificant figures) of the larger, it will be ignored giving the
result 857 800 � 96 �(857 800.
The second problem occurs when tests for equality are

made on real numbers. The conversion of decimal numbers
to binary numbers can only be made to the resolution of the
floating point format. If real numbers must be used for
comparison, a simple equates (�() is very risky. The compo-
sites >=, (greater than or equals), and <=, (less than or
equals), are safer, but it is generally better practise to use
integers for tests if at all possible.
The final representation, BCD for Binary Coded Decimal,

is used for connection to outside world devices such as
digital displays or thumbwheel switches. Such devices are
arranged in a decimal format, with 4 binary bits per decade,
for example

1 0 0 1 0 1 0 1

can be interpreted in BCD as 95.
This representation is wasteful, as six `numbers' are

not used per four bits (10 to 15 inclusive). It is, however, a
convenient form to use with external wiring. Most PLCs
therefore have instructions which convert BCD to the inter-
nal binary format of the PLC, and binary back to BCD.
The types of numbers available in each PLC range vary

considerably according to the model (and obviously the
price). The Mitsubishi F2, for example, purely allows move-
ment, comparison and output of numerical data from coun-
ters or timers, making it essentially a bit operation machine.
In the Siemens range, the popular 115-U uses only 16 bit

integer numbers but the next model in the range, the 135-U,

//integras/b&h/Eer/Final_06-09-02/eerc016

Figure 16.48 Three of the six states

Figure 16.49 Two of the plant outputs

can handle 16 bit and 32 bit integers and floating point
numbers. A similar spread of capabilities will be found
amongst the Allen Bradley, GEM-80 and ABB families.

16.4.3 Data movement

Numbers are often moved from one location to another; a
timer preset may be required to be changed according to
plant conditions, a counter value may need to be sent to an
output card for indication on a digital display or the result

Numerics 16/31

of some calculations may be used in another part of a
program.
The Allen Bradley PLC-5 uses one rung per move opera-

tion, and is possibly the simplest to explain first. Its simpli-
city of one rung per operation is continued in all the
arithmetic functions we shall consider, but it can lead to
more rungs being used for a given operation than in other
machines.
Figure 16.54(a) shows the form of the rung. It starts with

some binary conditions; if these are all made the output
MOV (for MOVE) is obeyed, transferring data from the
source to the destination. The source and destination can be
any location where numerical data can occur, for example

Integer number (e.g. N7:26)

Floating point number (e.g. F8:33)

Counter or timer preset (e.g. C5:17.PRE or

T4:52.PRE)

Counter or timer accumulated value (e.g. C5:22.ACC or

T4:6.ACC)

I/O word data (e.g. I:23 which is all 16 bits from inputs

on card 3 in rack 2)

If data is transferred between integer and floating point
forms, the conversion is performed automatically however
care must be taken transferring floating point numbers to
integers as an error can occur if the floating point number is
outside the integer range. Finally, as a source only, a con-
stant (such as 3, 17 or 4057) can be used.
The example of Figure 16.54(a) thus moves the number

held in N7:34 to the preset of timer T4:6 when the rung
conditions are met.
Siemens and GEC use a slightly different approach which

leads to more compact programs. Both treat a data movement

//integras/b&h/Eer/Final_06-09-02/eerc016

16/32 Programmable controllers

Figure 16.50 An example of spaghetti programming approximating to state 2

Figure 16.51 Grafset symbols: (a) divergence; (b) simultaneous
divergence; (c) convergence (d) simultaneous convergence

as two separate instructions via a separate accumulator
(a single word storage location). Siemens use the instruc-
tions load to move data from a source to the accumulator,
and transfer to move data from the accumulator to the
destination as Figure 16.54(b). The data can come from
(or go to) any data storage area, some of which are

IW a 16 bit input word
QW a 16 bit output word
T a timer word

a counter word
DW a 16 bit data storage word

Figure 16.54(b) would thus be programmed as

:L T113 (timer value to accumulator)
:T DW45 (accumulator to data word 45)

The use of the accumulator is not obvious in the
GEM-80. The-<AND>- instruction puts the binary num-
ber from the specified location (again internal storage or

Figure 16.52 State diagrams on the Mitsubishi F2: (a) state diagram;
(b) part of the ladder diagram corresponding to (a)

C

//integras/b&h/Eer/Final_06-09-02/eerc016

Numerics 16/33

RUN_CMD
AUTO_CMD AUTO_CMD

MAN_CMD MAN_MODE AUTO_MODE

Ladder Rung (LD) Language

AUTO_CMD

&

> = 1 RUN_CMD

AUTO_MODE

MAN_CMD

MAN_MODE
 &

AUTO_MODE

Function Block (FBD) language

RUN_CMD : = AUTO_CMD & AUTO_MODE

OR (MAN_CMD & MAN_MODE & NOT AUTO_MODE)

Structured Text (ST) Language

Figure 16.53 The five programming methods defined in IEC 1131-3

Figure 16.54 Data Movement: (a) Allen Bradley PLC-5; (b) Siemens
S5; (c) GEM-80

I/O) into the rung, and the -<OUT>- instruction puts the
value from the rung to the specified address. In Figure
16.54(c) the (binary) value from 16 bit input word A12 is
placed into 16 bit storage word G24.

LD AUTO_CMD
AND AUTO_MODE
OR (MAN_CMD
AND MAN_MODE
ANDN AUTO_MODE
)
STRUN_CMD

Instruction List (IL) Language

Ready Lmp-1

Start_PB

Flll SDV–1

Full & P1 Full & P2

– DI sch 2 SDV–3DI sch 1 SDV 2

1 done 2 done

Close 1 SDV 4 Close 2 SDV– 5–

1 Closed 2 Closed

Walt Lmp–2

Sequential Function Chart (SFC) Language

BCD/binary conversion is available with -<BCDIN>-
and -<BCDOUT>- instructions, the direction of the con-
version being obvious.
In the ABB Master, the points between which data is to

be transferred are simply linked on the logic diagram.

16.4.4 Data comparison

Numerical values often need to be compared in PLC pro-
grams; typical examples are a batch counter saying the
required number of items have been delivered, or alarm
circuits indicating, say, a temperature has gone above some
safety level.
These comparisons are performed by elements which

have the generalised form of Figure 16.55, with two numer-
ical inputs corresponding to the values to be compared, and
a binary (on/off) output which is true if the specified condi-
tion is met.
Many comparisons are possible; most PLCs provide

A Greater Than B (A>B)
A Greater Than or Equal to B (A>�B)
A Equals B (A �(B)
A Less Than or Equal to B (A<�B)
A Less Than B (A<B)

where A and B are numerical data. With real (floating
point) numbers the equal test should be avoided for the rea-
sons given in the previous section. There are many other
possible comparisons; a PLC-5, for example has a limit
instruction which tests for A lying between B and C and
the GEM and Siemens have a not equal test.

//integras/b&h/Eer/Final_06-09-02/eerc016

16/34 Programmable controllers

Figure 16.55 Basic idea of data comparison

Figure 16.56 Use of data comparison for a high temperature alarm:
(a) Allen Bradley PLC-5; (b) Siemens S5 in logic notation

Figure 16.56 shows the setting and resetting of an alarm
flag B3/21 (for a PLC-5 ladder diagram) and F21/02
(for Siemens logic symbols). The alarm bit is set if tempera-
ture (read from an analog input card in format NN.N �C
and held in N7:15 in the PLC-5 or DW42 in the Siemens
115-U) goes above 50.0 �C. Once set, the alarm is stored
until the temperature goes below 40.0 �C.

16.4.5 Arithmetical operations

Numerical data implies the ability to do arithmetical opera-
tions, and all PLCs we are considering (apart from the sim-
ple F2) provide the ability to do at least four function maths
(add, subtract, multiply and divide).
In Section 16.4.2 we discussed integer and floating point

numbers. Care needs to be taken with integer operations.
The range of a 16 bit two's complement number is �32 768
to �32 767. If an arithmetical operation goes outside this
range, the number will overspill, for example

which is not quite the expected result. The PLCs have an
overspill flag which can be examined and used to flag an

alarm, or set the result to, say, zero with a move instruction.
Similar precautions need to be taken with subtraction and
multiplication (the latter being particularly vulnerable to
giving an overspill; for example 200 �(200 �(40 000, well
over-range.)
Even greater care needs to be taken with division. A fault

condition on external plant or a PLC input card or a pro-
gramming error can lead to a divide by zero error. This will
stop many PLCs dead in their tracks with a `Program
Fault'. It is therefore good practice to proceed any vulner-
able divide instruction with a limit check to ensure it will
only be obeyed when a sensible result is obtained.
Each PLC manufacturer handles arithmetic in a slightly

different way with varying degrees of ease and readability.
None are as simple as a high level language such as BASIC
or Pascal, and the facilities are generally limited to four
function maths plus square root in all bar the most expen-
sive machines.
A PLC-5 uses maths blocks such as ADD, SUB,

MULT, DIV, giving a simple, if somewhat lengthy, pro-
gram. Figure 16.57 shows how a simple calculation could
be performed for a self correcting length cutting program.
More powerful PLC-5s (such as the 5±40) have a block
compute instruction (CPT) which allows a mathematical
expression to be evaluated in a single instruction.
The 115-U only evaluates arithmetic instruction in STL

(statement list) format. It will be remembered from our
discussion of the accumulator that the load, (L) and transfer
(T) instructions use an internal accumulator. There are, in
fact, two accumulators, and a load instruction moves
the contents of accumulator 1 to accumulator 2 then
moves the contents of the source to accumulator 1,
shown in Figure 16.58(a). An arithmetic instruction (add,
subtract, etc.) works on the contents of both accumulators.
Figure 16.58(b), thus adds two numbers and transfers the
result to storage.
The Siemens equivalent of Figure 16.57 would be

L DW30 (required length)

L DW31 (measured length)

SUB (leaving error in Acc 1)

L DW32 (gain)

MULT (leaving correction)

L DW40 (the old cut length)

ADD (add change to give new length)

T DW40 (put back to store)

Figure 16.57 Arithmetic in the PLC-5

//integras/b&h/Eer/Final_06-09-02/eerc016

Figure 16.58 Arithmetic in a Siemens S5

The most understandable form of representation is pos-
sibly the GEM-80 ladder and the ABB Master formats
shown in Figure 16.59(a) and (b) respectively.
All maths operations, particularly those involving

floating point numbers, are time consuming, and it is good
programming practice to only obey instructions when they
are needed, and not waste time repetitively obeying them
on every PLC scan.

16.4.6 Analog signals

So far we have considered signals that are essentially digital
(on/off) in nature plus simple numerical data from timers and
counters. Often, though, a PLC will be required to measure,

Numerics 16/35

or control, plant signals which can assume any value in some
predetermined range. Typical signals of this type are tem-
peratures, flows, pressure, speeds etc. These are known as
analog signals. In a similar way a PLC may have to produce
analog output signal to drive meters and proportional valves
or provide a speed reference for a motor drive controller.
To meet these requirements a PLC needs analog input and

output cards. These have somewhat different characteristics
to the simple digital cards we have discussed so far. This sec-
tion considers analog signals and the way they are handled.
An analog input card converts a continuously varying

analog signal to a digital form that can be used inside a
PLC program. The analog signal is generally represented
initially, at least, as an integer number.
This analog to digital conversion (usually known by the

initials ADC) is inherently accompanied by a loss of resolu-
tion which depends on the number of bits used. An 8 bit byte
for example, can represent an integer in the range 0±255.
If this was used to represent an analog signal measuring
a flow with a span (range) from 0±1800 l/min, one bit
will represent approximately 7 l/min (given by 1800/255).
Any control strategy in the program based on finer resolu-
tion is meaningless (and particular care should be taken
with comparisons, as some values can never be obtained; a
flow of 138 l/min, for example, would never be given by our
8 bit system, it would jump from 134 l/min to 141 l/min.
Comparisons should therefore always be based on (greater
than or equal to) or (less than or equal to)).
A commoner resolution is 12 bits. This gives a representation

as an integer from 0±4095. With our flow of 0±1800 l/min, one
bit would represent just under 0.5 l/min (1800/4095 �(0.44).
This `coarseness' is not the problem it might at first

appear. Although an analog transducer can give any value

Figure 16.59 The same mathematical function in a GEM-80 and ABB Master: (a) GEM-80 program. LINCON is an arithmetic function used to avoid
truncation errors with integer arithmetic; (b) ABB master program using function blocks. Variables are accessed by database names

//integras/b&h/Eer/Final_06-09-02/eerc016

16/36 Programmable controllers

Figure 16.60 The effect of the sampling rate

in its span, it will have inherent errors. Many first line trans-
ducers are only 2% accurate. If our flow transducer had 2%
accuracy, its measurement could be in error by 36 l/min.
Alongside this error, the 7 l/min resolution from an eight
bit card is probably quite reasonable.
It is therefore useful to think of the resolution in terms of

an error which is to be added to the error from the trans-
ducer itself

No of bits Range Error
8 0-255 0.5%
10 0-1023 0.1%
12 0-4095 0.025%

Few industrial transducers have an accuracy better than
0.1%, and a 12 bit conversion will add little error in most
applications.
The conversion from an analog signal to a digital repres-

entation is not instantaneous. Typically signals are read ten
times per second. An analog input card thus takes regular
`snapshots' of each analog signal. In Figure 16.60(a) this
causes no problems, in Figure 16.60(b) information is starting
to be lost and in Figure 16.60(c) a totally false view of the
signal is being given. This latter effect is known as `aliasing'.
It is therefore very important to have a sufficiently fast

conversion time. Every analog signal will have a maximum
frequency at which it can change, and can be represented by
a gain/frequency plot as Figure 16.61 from which the band-
width and the critical frequency fc can be observed. To get a
true series of `snapshots' we must sample the signal at least
twice the rate of fc. If a certain analog signal has a maximum
frequency of 2 Hz, we must at least sample it at 4 Hz, or once
every 250 ms. This, somewhat simplified, is known as
Shannon's sampling theorem. In real systems, fc is rarely
known precisely and a scan rate of 4 fc to 10 fc is normally
chosen to give a reasonable safety margin. For our 2 Hz
signal, an 8 Hz sampling rate or 12.5 ms conversion time,
would be needed. It is good practice to pass the signal through
a low pass filter before the ADC to ensure frequencies above fc
are removed. This is known as an anti-aliasing filter.

Gain
(dB)

0

Frequency range of interest

0.01 0.1 1 fc 10 Freq
(Hz)

Figure 16.61 Gain/frequency response for an industrial process

Surprisingly this rarely gives problems. Practical industrial
systems, dealing with real plant signals concerned with mate-
rials with significant mass, rarely have bandwidths greater
than 0.5 Hz, and any frequency higher than this can be con-
sidered to be extraneous noise and filtered out. Temperature
loops, for example, can often be sampled as slowly as once
every few minutes without introducing any errors.
A typical analog input card can read eight 12 bit signals,

each ranging from 0±4095 in their `raw' form. Generally
these will need to be accessed via the PLC program and
converted to engineering units such as �C, or psi, or l/min.
A common method of handling these signals, is shown in

Figure 16.62. A block of storage locations in the PLC store
is directly associated with the analog input card. The
card `free runs', writing digitised values into the store from
where they can be read by the rest of the program.
In Siemens PLCs with fixed slot addressing, for example, the
store addresses are determined directly by the analog card
position in the rack; a card in slot 2 of the first rack will
write its values to a block of stores starting at location 192.
Conversion from a raw 12 bit signal to engineering units

can have subtle traps for the unwary. In theory the conver-
sion is simple. If N is the raw signal, HR the high range

//integras/b&h/Eer/Final_06-09-02/eerc016

Numerics 16/37

Figure 16.62 Linking channels on an analog input card to a PLC's
memory

signal (corresponding to 4095) and LR the low range (corre-
sponding to zero) then the measured value, MV is simply

N � �HR �(LR�(
MV � �(LR �16:1�(

4095
If the calculation is done with real (floating point) numbers
there should be no problem, and Equation 16.1 can be used
directly.
If, however, integer numbers have to be used, great care

must be taken. If the multiplication N �((HR ± LR) is
performed first, arithmetic overspill is likely unless 32 bit
results can be accommodated. If the division N/4095 is
performed first, the equation will not work as N is always
less than 4095 giving an integer result of zero (and an MV of
LR). Wherever possible real numbers should be used if
Equation 16.1 has to be performed.
To avoid this problem, the different manufacturers have

devised methods to read analog input signals. In the ABB
Master for example, the database for each signal defines
HR, LR, the sample rate and a name by which the signal
will be referred to in the program. There are, obviously,
detail differences, so by way of example we will look at the
way analog signals are read by an Allen Bradley PLC-5.
The Allen Bradley PLC-5 reads analog signals with an

analog input card (1771-IFE) which can in its simplest
form, read 8 analog inputs. The PLC communicates with
the card via instructions called block transfers which trans-
fer data to (or from) a block of store locations. Data trans-
fers from the PLC to a card are called block transfer writes
(BTW) and, not surprisingly, transfers from a card to the
store are block transfer reads (BTR). For each type of
instruction, somewhat simplified, the programmer states:

(a) The direction of transfer (BTW or BTR).
(b) The card address (rack, slot and slot half, left or right).
(c) The store location start address where the data is to be

received.
(d) The number of 16 bit words to be transferred.

The analog input card uses both BTW and BTR instructions,
the BTW being used once, after power up, to configure

Figure 16.63 The PLC-5 block transfer write (BTW) and block
transfer read (BTR) instructions

the module and the BTRs subsequently to read the data as
summarised in Figure 16.63.
The post power up BTW sets how the module is to

behave; whether it gives data in binary or BCD and the
minimum and maximum values for the input range (HR
and LR in Equation 16.1) on each channel. The card uses
these to return readings in engineering units (in 12 bit bin-
ary integer or two's complement format or 12 bit BCD).
Once set up, values can be read at the required time inter-

vals with a BTR. This gives signal values in the specified
store locations along with over-range and similar alarms.
The values can then be used elsewhere in the program.
PLCs are often required to provide analog output signals.

Like analog inputs, these signals have standard voltage ranges
of 1±5 V or 0±10 V or the current range of 4±20 mA.
A typical analog output card, for example, is the Allen

Bradley 1771-OFE which has four output channels, each
turning a 12 bit (0±4095) digital signal into an analog out-
put. Isolation amplifiers are used on the outputs to reduce
the effects of noise and allow the signals to connect into
external devices fed from different electrical supplies.
The digital signals come from storage locations inside the
PLC as shown on Figure 16.64. This conversion is known
as Digital to Analog conversion, or DAC.
For best resolution the PLC should use the full 0±4095

range, but this is frequently impossible. If the PLC, for
example, is setting the speed range of a motor from 0±1350
rpm, it will need to convert 0±1350 into the range 4±20 mA.
Equation 16.1 can be re-arranged as

4095�N �(LR�(
X � �16:2�(

HR �(LR

where X is the value passed to the DAC (in the range
0±4095). N is the output number from the PLC in engineer-
ing units, and HR/LR are the high and low range values. As
before, great care must be taken with Equation 16.2 to
avoid overspill or loss of resolution.

H

The PLC-5 communicates with the 1771-OFE with the
BTW instruction described previously. The programmer
sets up a block of twelve words, the first four of which
contain the values, and the balance the set up data such as
R and LR. The block of data is then written to the card

with a BTW. Figure 16.65 shows a typical example where an
analog speed reference can be raised or lowered by operator
controlled pushbuttons. Note the use of greater than (GTR)
and less than (LES) instructions to confine the counter
value within the allowed range of 0±1350 rpm.
Ranging as above allows engineering units to be used inside

the program, the counter in Figure 16.65, for example, holds
the required speed directly in rpm, but this is accompanied by
a loss of resolution as explained earlier. For the range 0±1350
rpm, we have a resolution of about 0.1%, compared with the
theoretical 0.025% resolution available from the card.

//integras/b&h/Eer/Final_06-09-02/eerc016

16/38 Programmable controllers

Figure 16.64 Analog output signals

Figure 16.65 Setting the speed for a motor with a counter and an analog output card

There are other operations that can be performed on
analog signals. A typical list, for the GEM-80, is

SQRT

LINCON
FGEN

LIMIT

RAMP

DEDBAND

ANALAG

Square root, mainly used with signals
from orifice plates.

Performs X*(A/B) �C with limiting.
Multipoint straight-line function generator
used for linearisation as Figure 16.66(a).

Performs limiting of signals as shown on
Figure 16.66(b).

Rate limiting (with different rise and fall
rates).

Deadband functions as Figure 16.66(c).
Useful for preventing `dither' in closed
loop control when PV and SP are close.

First Order lag. Used for filtering.

A simple first order filter can be produced by any PLC
which supports floating point numbers using the procedure
shown on Figure 16.67(a). This procedure uses just three
rungs or three function blocks and is obeyed for one program
scan at regular time intervals �t. Vi is the raw input signal
and Vf is the filtered output signal. Vf(n�1) is the filtered value
obtained on the previous execution �t seconds ago. The
error between Vi and Vf(n�1) is calculated (Ve) then multiplied

by a gain K to give a change Vc. This is added to Vf(n�1) to
give the new filtered value Vf. Figure 16.67(b) shows the
response for a step change in Vi with K set at 0.25. At each
execution of the routine Vf moves 25% of the difference
between Vi and Vf(n�1). The gain, K, determines the apparent
time constant and must be in the range 0 <& K <& 1. The gain K
should be set to �t/T where T is the required time constant.

16.4.7 Closed loop control

A closed loop system based on PLCs will be similar to Figure
16.68. The plant variable, PV, is read by an analog input
card, and the output OP provided by analog output cards.
The setpoint, SP, is provided by the operator or by some
program sequence. The PID algorithm is then provided by
the program. Chapter 13 gives more detail on the theory of
closed loop control and an explanation of the PID algorithm.
It is possible to write PID algorithms with four function

(�� */) mathematics, but it needs great care. The program
scan time must be known for the integral and derivative
routines, and protection against output actuator saturation
must be built in to overcome an effect called integral wind-up.
PLCs, are becoming increasingly powerful, and most med-

ium range PLCs now provide a three term PID function in

//integras/b&h/Eer/Final_06-09-02/eerc016

Numerics 16/39

Figure 16.66 GEM-80 special functions for use with analog signals: (a) FGEN with N points at equal intervals x; (b) LIMIT, high and low limits can
be different; (c) DEDBAND without and with offset

Filtered signal

(a)

Vi
–

+
Raw signal

Gain
/Tt

Ve
Error

V
f(n–1)

t
Delay

+
+change

Vc Filtered signal Vf

(Last value)

t

Vraw

(b)

time

Figure 16.67 Programming a first order filter: (a) schematic diagram; (b) response to step input

their instruction set. Figure 16.69 shows a ratio temperature
control program written for an Allen Bradley PLC-5 processor.
These three rungs are controlling the temperature in a

furnace, with the temperature PID block controlling the air
valve. The air flow is measured, multiplied by the required
ratio and used as the setpoint for the gas PID block.
The control blocks in each PID instruction hold the

data and working areas for the PID function; things like
auto/man status and the sum for the integral action. The
setpoint is written directly into the third word of the control
block. The process variable is the feedback signal from the
variable being controlled, usually obtained from an analog
input card. Settings for gain, Ti and Td are also contained in
the control block data.
A three term control algorithm can suffer from integral

wind-up in saturation or manual operation. The tieback
variable is used to give the current value corresponding to
the driven actuator output (possibly after auto/manual
changeover) and is used to prevent wind-up and to give
bumpless transfer. The control variable is the signal from

the PID algorithm, usually sent to an analog output card
via auto/manual changeover logic.
The three rungs of Figure 16.69 mask, to some extent, the

work that must be done elsewhere in the program. Data from
the outside world must be obtained with analog input cards,
and the controller output(s) must be written to the actuators
with analog output cards. The timing of these reads and
writes must be regular and linked to the PID instructions.
Auto/manual changeover logic will also be required,

linked into the PID instructions with the tieback variable
and the auto/man status flag (which makes the integral
term track the tieback in manual).
The operator will also require a link to the control,

so pushbuttons, displays and alarms must be provided.
All of this is in addition to the basic PID control.

16.4.8 Intelligent modules

We have so far considered analog input and output mod-
ules, which are semi-intelligent (compared to `dumb' digital

//integras/b&h/Eer/Final_06-09-02/eerc016

16/40 Programmable controllers

input and output cards). These are examples of a more gen-
eral range of intelligent modules which most manufacturers
offer to simplify the designers task.
A typical example is a high speed counter. We saw earlier

in Section 16.2.4 that the scan time limits the maximum
count rate of a PLC to about 10 Hz. High speed counter
cards are available for use where higher count speeds are
needed, or the program scan time introduces an unaccept-
able random error.
In these, the card contains a bi-directional counter which

can be directly driven by a pulse encoder. The counter value
can be loaded from the PLC, and read back when needed.
The PLC can also download a preset value, allowing the
counter card to directly drive outputs according to the rela-
tionship between the count and the preset.
Other common intelligent modules are bar code readers

(for stock tracking), stepper motor controllers (for position
Figure 16.68 Closed loop control with a PLC control systems) and vision modules (for quality control

applications).

PLC-5 LADDER LOGISTICS Report header (c) ICOM Inc. 1987–1993

PLC-5 Ladder Listing

File £2 Proj : PID2 Page : 001 10:07 05/12/95

Zone Temperature PID instruction.

Adjusts Air control value

New_AnIn Temperature

Data_So PID_Control

Fire_PID (Air_Flow)

B3 PID

0 PID

0	 Control : N7 : 20

Process Variable : N7 : 100

Tieback : N7 : 106

Control Variable : N7 :120

Multiply Air Flow in N7:105 by F8:6 to get gas setpoint.

Note that the ratio in F8:6 changes according to

post recuperator air temperature and N7:52 is scaled

by ten to give reasonable range for PID instruction.

New_AnIn

Data_So Gas_Flow

Fire_PID Set point

B3 Mul

1 Mul

0 A : N7 : 105

1432

B : F8 : 6
1.226

Dest : N7 : 52

Gas Flow controlled to follow air flow	 1755

New_AnIn

Data_So Gas_Flow

Fire_PID PID_Control

B3
PID

2 PID

0
 Control : N7 : 50

Process Variable : N7 : 107
Tieback : N7 : 108
Control Variable : N7 :121

3	 [END]

PLC-5 LADDER LOGISTICS Report header (c) ICOM Inc. 1987–1993
PLC-5 ladder Listing

File £2 Proj : PID2 Page : 001 10 : 07 05/12/95

Figure 16.69 PID control on an Allen Bradley PLC-5

//integras/b&h/Eer/Final_06-09-02/eerc016

Distributed systems and fieldbus 16/41

16.5 Distributed systems and fieldbus

16.5.1 Introduction

For a true distributed control system we need a method
where several PLCs or computers can be linked together to
allow communication to freely take place between any
member of the system.
To achieve this we need to establish a connection

topology, some way of sharing the common network that
prevents time wasting contention and an address system that
allows messages to be sent from one member to another.
Such systems are known as Local Area Networks (LAN) or
Wide Area Networks (WAN) dependent on the size of the
area and the number of stations.

16.5.2 Transmission lines

Any network will be based, to some extent, on cable, and at
the high speeds used there are aspects of transmission line
theory that need to be considered. Consider the simple
circuit of Figure 16.70(a). At the instance that the switch
closes, the source voltage does not know the value of the
load at the far end of the line. The initial current step, i,
is therefore determined not by the load, but by the char-
acteristics of the cable (dependent on the inductance and

Figure 16.70 Transmission lines and the characteristic impedance:
(a) a transmission line; (b) the effect of the terminating resistor;
(c) The effect of a `T' in the line

capacitance per unit length). A line therefore has a char-
acteristic impedance, typically 75
 or 50
 for coax, and
120 to 150
 for biaxial or screened twisted pair. The initial
current step will therefore be V/Z where Z is the character-
istic impedance.
After a finite time, this current step reaches the load R,

and produces a voltage step i �(R. If R is not the same as Z,
this voltage step will not be the same as V, and a reflection
will result. Typical results are shown on Figure 16.70(b).
This effect occurs on all cables and is normally of no con-

cern as the reflections only persist for a short time.
If, however, the propagation delay down the line is similar
to the maximum frequency rate of the signal, the reflections
can cause problems. It follows that a transmission line
should be terminated by a resistance equal to the character-
istic impedance of the line. Normally, devices for connect-
ing onto a transmission line have a high input impedance to
allow them to tap in anywhere, with terminating resistors
being used at the ends of the line.
A side effect of this is that T connections, or spurs, are

not allowed (unless the length of the spur is short). In Figure
16.70(c) a T has been formed. To the signal, coming from
the left, the two legs appear in parallel giving an apparent
impedance of Z/2 and a reflection.

16.5.3 Network topologies

From the previous section it should be apparent that any
network can sensibly only be based on a ring (which needs
no terminating resistors) or a line (with a terminating
resistor at each end). Figure 16.71 is a master/slave system
where a common master wishes to receive or send data
from/to slave devices, but the slaves never wish to talk to
each other. All the slaves have addresses, which allows the
master to issue commands such as `Station 3; give me the
value of analogue input 4' or `Station 14; your setpoint is
751.2'. Such systems are often based on RS422 to provide
improved noise immunity and allow longer lengths of line.
The Star network of Figure 16.72 is again based on a

master with a point to point link to individual stations.
This arrangement is commonly used for high level computer

Figure 16.71 A Master/slave network

Figure 16.72 A Star network

//integras/b&h/Eer/Final_06-09-02/eerc016

16/42 Programmable controllers

Figure 16.73 A masterless peer to peer or ring network

Figure 16.74 A peer to peer link arranged as a single line bus with
terminating resistors

systems. Communication control is performed by the
master station. Station to station communication is possible
via, and with the co-operation of, the master.
In Figure 16.73 all the stations have been connected in a

ring. There is no master, and all stations can talk to any
other station and all have equal right of access. The term
peer to peer link is often used for this arrangement. With
Figures 16.71 and 16.72 control was firmly in the hands of
the master. With the ring, some technique is needed to
avoid clashes when two stations wish to use the line at the
same time. We will discuss this in the following section.
Figure 16.74 is probably the commonest type of network

used by PLCs. It is a single line with terminating resistors
and, like the ring, is a peer to peer link where all stations
have equal standing.

16.5.4 Network sharing

A peer to peer link allows many stations to use the same
network. Inevitably two stations will want to communicate
at the same time. If no precautions are taken, the result will
be chaos. Various methods are used to govern access to the
network.
One idea is to allocate time slots into which each station

can put its messages. This is known as Time Division
Multiplexing, or TDM. Whilst it prevents clashes, it can be
inefficient as a station will have to wait for its time slot even
if no other station has a message to send. To some extent a
mismatch between the frequency of messages from different
stations can be overcome by giving more slots to hardwork-
ing stations. This is sometimes known as Statistical TDM.
The empty time slot of Figure 16.75 uses a packet which

continuously circulates around the ring. When a station
wishes to send a message it waits for the empty slot to
come round, when it adds its message. In Figure 16.75,
station A wishes to send a message to station D. It waits

Figure 16.75 Empty slot and token passing network

until the empty packet comes round. Then it puts its mes-
sage onto the network along with the destination address D.
Stations B and C pass the message but ignore it because it is
not for their address. Station D matches the address, reads
the contents (and appends that it has received the message).
Stations E±H ignore it, but pass it on. Station A receives the
message back again, sees the acknowledgement and
removes its message leaving the empty packet circulating
the ring again. A similar idea is a token passing, where
a `Permit to Send' token circulates round the network.
A station can only transmit when it is in possession of the
token, which is released when the acknowledgement that
the message arrived is received.
Bus systems usually employ a method where a station

wishing to send a message listens to the network to see if it
is in use. If it is, the station waits. If the network is free, the
station sends its message (thereby locking out any other
station until the message ends). This is known as Carrier
Sense Multiple Access (CSMA).
Situations can still arise, however, where two stations

simultaneously start to send a message, and a collision
(and garbage) results. This situation can easily be detected,
and both stations then stop and wait for a random time
before trying again. A random time is used to stop the two
stations clashing again. This is known as Carrier Sense
Multiple Access with Collision Detection (or much more
simply as CSMA/CD).
There is a fundamental difference between TDM, empty

slot, and token passing as one group and CSMA. With
the former there is a certain amount of time wasting, but
every station is guaranteed access within a specified time.
With CSMA there is little time wasting, but a station can,
in theory, suffer repeated collisions and never get access
at all.
A useful analogy is to consider motor car traffic control.

TDM/token passing approximates to traffic lights, CSMA
to roundabouts. In heavy traffic the best solution is traffic
lights; everyone gets through and the waiting is shared
evenly. Roundabouts can `lock out' one road when the traffic
flow is heavy and uneven from one direction. In light traffic,
however, roundabouts keep the traffic flowing smoothly.

16.5.5 A communication hierarchy

Early process control systems tended to be based on a single
large computer or PLC. The advent of cheap PLCs with good

//integras/b&h/Eer/Final_06-09-02/eerc016

Distributed systems and fieldbus 16/43

Figure 16.76 A simple communication hierarchy

communications has led to the development of a hierarchy of
machines which split the tasks between them. Such an
arrangment is called a Distributed Control System or DCS.
Such a system is generally arranged as Figure 16.76 with a

hierarchy split into four levels.

Level 0 is the actual plant, with devices linking to the next
level by direct wiring or simple RS232/422 serial links.
Level 1 is the level the majority of this chapter is con-

cerned with, consisting of PLCs and small computers
directly controlling the plant.
Level 2 is supervisory computers for large areas of plants.
Level 3 is the large company mainframe.

Usually the layout is not as clear cut as this implies. There
are also differences between different companies, some num-
ber the layers from top to bottom and some ignore level 0.
There are many advantages to distributed systems. The

resulting tree is conceptually simple, and as such is easy to
design, commission, maintain and modify. A correctly
designed system will be, for short periods, fault tolerant
and can cope in a limited mode with the failure of individual
stations. A distributed system can also bring about an
increase in performance as lower level machines take the
work off higher level machines.

16.5.6 Proprietary systems

In this section we will look at a typical proprietary system
used to link PLCs from the same manufacturer. Typical
examples are the GEM-80s Coronet and ESP, Siemen's
Sinec and Modicon's Modbus. For reasons of space we
shall consider how machine to machine links are achieved
with Allen Bradley PLC-5s which communicate with each
other on a peer to peer (no master) token passing highway
based on twinaxial cable and operating at 57.6 Kbaud.
Their trade name is Data Highway Plus. The PLC stations'
addresses are set on switches in each PLC, and up to 64
stations can exist on one line with octal addresses 0±77.
Communication is established with a single message

(MSG) instruction. This can be set up to read or write a
block of data, the programmer specifying:

(1) The start address at the local end;
(2) The start address at the target end;
(3) The length of the block to be transferred (in words); and
(4) The station address at the remote end.

The MSG instruction appears in a program as Figure
16.77(a), the transfer being initiated every time the rung

Level 3
Company mainframes LANs and WANs

e.g. Ethernet

Level 2
Supervisory
computers

Proprietary
Level 1 or fieldbus
PLCs and control
computers

Hardwire or
fieldbus

Level 0
plant devices

goes true. The ENable bit goes true when the transfer is
started, and the DoNe bit goes true when it has been
successfully completed. The ERRor flag goes true when an
error occurs. Common errors are a line fault, a non existent
address at the far end or the PLC at the far end shutdown.
The cause of the fault is given in flags set in the message
control word. Link statistics (e.g. number of retries) are
kept in the processor for diagnostic purposes.
The details of the MSG instruction are set up by the pro-

grammer via the screen of Figure 16.77(b). These are mostly
self explanatory, with the possible exception of the remote
link which is concerned with sending data via a gateway
module to a different highway, possibly of a different type.
The data highway is also used by the programming term-

inal, so a programmer can connect anywhere onto the data
highway and link into any machine on the network.

16.5.7 Ethernet

Ethernet is a very popular bus based LAN originated by
DEC, Xerox and Intel and is commonly used to link the
computers at level 2 in Figure 16.76. It uses 50
 coaxial
cable, with a maximum cable length of 500 m (although
this can be extended with repeaters). Up to 1024 stations
can be accommodated, although in practical systems the
number is far lower. Baseband (i.e. non modulated) signal-
ling is used with CSMA/CD access control. The raw data
rate is 10 Mbaud, giving very fast response at loading levels
up to about 20±30% of the theoretical maximum. Beyond
this, collisions start to occur.
Because Ethernet uses CSMA/CD the successful trans-

mission of a message cannot be guaranteed. It is possible,
(but unlikely) for a given message to continually suffer from
crashes and never get access to the network. In the jargon
ethernet is `non determinstic'. In practice, if the network
loading is kept below 30% of its theoretical capacity this is
not a problem. Many PLCs (such as the PLC-5/40E) now
can provide direct connection to an Ethernet network.

16.5.8 Towards standardisation

We have already discussed the difficulties of linking differ-
ent equipment. There is normally little problem linking PLC
networks to higher level computers. PLC manufacturers
publish their message format and protocols, and interfacing
software (called `drivers') has been written for all common
computers and PLCs. The difficulty comes when you want
to link two machines from different manufacturers at level 1
in Figure 16.76. In many cases, the only economical solution
is to do it through the computers and the higher level link.

//integras/b&h/Eer/Final_06-09-02/eerc016

16/44 Programmable controllers

Figure 16.77 The PLC-5 Message (MSG) Instruction: (a) as written in the ladder diagram; (b) as seen in detail on the programming terminal

General Motors (GM) in the USA were faced with this
problem and attempted to specify a LAN for industrial
control. This was called MAP (Manufacturing Automation
Protocol). A similar office based LAN called TOP
(Technical Office Protocol) was conceived at the same
time. With GM's purchasing muscle, it involved several
automation equipment manufacturers. A firm commitment
to the OSI model was made, and the network based on
broadband token bus as specified in IEEE 802.4 was chosen
as it is deterministic.
MAP, however, has not been widely adopted. There

appears to be several reasons for this distinct lack of
enthusiasm. The first is a bureaucratic organisation and a
changing specification. The second reason is cost; MAP links
often cost more than the PLC to which they are connected.
The third reason is speed; by using token passing MAP is
slow by comparison with other standards. The final, and
perhaps most crucial, fact is that MAP seems to have settled
at a level where it is in direct competition with established
LANs such as Ethernet rather than the proprietary systems
at level 1 of Figure 16.76.
A standardised fieldbus system would allow PLCs,

sensors and actuators to be connected and communicate
with minimal cost. Unfortunately at the time of writing (early
2002) a standard seems as far away as ever with progress
being slowed by commercial and national infighting.
Profibus is one the more common fieldbus contenders,

largely because it has been adopted by Siemens and many

other German electrical companies. There are three versions
of Profibus designed for three different application areas.
All use token passing.
The first, called Profibus-DP, for decentralised periphery,

is by far the commonest and is designed to link intelligent
masters (e.g. a PLC), to slave devices such as sensors, drives
or actuators. Profibus only uses levels 1 and 2 of the ISO/OSI
model. Twisted pair RS485 or fibre optics are used for
transmission.
The second, Profibus-FMS, for field message specifica-

tion, is designed for the higher level with multiple masters
and allowing peer to peer communication. Levels 1, 2 and 7
of the ISO/OSI model are used and RS485 or fibre optics
for transmission.
Both DP and FMS share the same transmission standards

and can consequently work together on the same network.
The final form, designed for process automation in hazar-

dous areas, is Profibus-PA which permits the construction
of an intrinsically safe network. Profibus-PA uses slightly
different standards to DP and FMS, but can be linked by a
segment coupler device.
All are a linear bus system, i.e. a straight line.

Transmission speeds from 9.6 kbit/s (up to 1200 m) to
12 Mbit/s (up to 100 m) can be used. Screened twisted pair
is used, with terminating resistors at each end of the bus. Up
to 32 stations can be used in each segment, each with
a unique station address. Segments can be coupled with
segment repeaters, allowing a total of 127 stations to be

//integras/b&h/Eer/Final_06-09-02/eerc016

Figure 16.78 Profibus-DP network: (a) connection at a Profibus
device. Non terminating devices use only pins 3 and 8; (b) mapping
between a Profibus device and memory in the network master

addressed. Addresses are assigned for global or group data
reducing the number of messages and time lag problems
when data for several devices are to be changed together.
Connections to masters or slaves are made via standard

9 pin D-type connectors, as shown on Figure 16.78(a).
Terminating resistors are either switched in internally at
the end stations or connected inside the final plugs. Note
that the terminating resistors require power, this normally
comes from the end stations themselves.
The manufacturer of each device on the network, e.g. a

VF drive, provides a disc file, called the GSD, which is a
description of the data exchange the device can support
(e.g. accepting speed reference and run command and pro-
viding load current and drive state etc.) plus operating para-
meters such as supported transmission speeds. Included in
the GSD file is a unique identification number assigned by
the Profibus User Organisation. The GSD files for all the
devices on the network are used along with the station
addresses to build a network description which is held in
the master.
Because Profibus-DP only uses levels 1 and 2, the data

exchange maps onto pre-determined areas in the master
controller (usually a PLC) as shown on Figure 16.78(b).
To change the speed of the drive, the user simply writes
the new speed into the mapped area, and the data is
transferred with no further action. In a similar manner,

Graphics 16/45

slave data and status is automatically read from the
mapped area. A Profibus-DP network is thus totally
transparent to the user.
A typical example of the problems that any attempts to

specify a standardised fieldbus system may encounter is the
continual introduction of new ideas. All the communica-
tions systems described so far are based on what is called
the source/destination model. If station A has information
for station B, a message is sent with the format:

Source A | Destination B | Data

If this information is to be sent to several stations, each will
need their own message. In applications where multiple
setpoints have to be sent to multiple controllers, the delay
caused by the time shift between the messages can cause
problems, although this can be overcome to some extent
by the use of group or global addresses as used by Profibus.
In addition, if station A needs information from station

B, (the state of an interlock for example), station A must
perform a read on each occasion the data is required.
A recent development, called the producer/consumer

model, uses a different approach. Here data is placed
onto the network with no indication as to who it is for.
The format is now simply:

Identifier | Data

All stations using this data accept it at the same time, elim-
inating the need for multiple messages. This significantly
reduces the number of messages and hence increases the
network speed.
The placement of data onto the network can be done in

two ways. The first, and fastest, is `notify on change'. Here a
station only places information on the network when a new
value is different than the old. Stations with an interest in
this data assume that the status or value remains the same
until notified otherwise. There are obvious dangers in this,
and a regular pre-defined `heartbeat' is included to say a
station is active on the network. The second approach
updates on a time basis, each data item having its own, or
a global, update time.
At the time of writing, Foundation Fieldbus is the only

producer/consumer fieldbus network, and Rockwell (Allen
Bradley) have also adopted the method for their proprietary
ControlNet. The latter is interesting as it combines the ideas
of their remote I/O and Data Highway onto one system and
allows PLC racks, (and their data), to be shared equally
amongst several processors and not dedicated to one as
before.

16.6 Graphics

Operator controls are being increasingly provided by
computer graphic screens. These can be a display device
designed specifically for a particular range of PLCs (for
example the Allen Bradley Panelview and the CEGELEC
Imagem) and general purpose graphic display devices (such
as ABB/ASEA's excellent Tesselator) or graphics software
running on conventional personal computers. Figure 16.79
shows some typical examples.
The major advantages are simplicity of installation and

flexibility. A graphics terminal has just two connections to
the outside world, a serial link connection and a power
supply. If it is used to replace a desk full of switches and
indicators there are obvious cost savings.
The designer of desks or control stations often has to deal

with changes and modifications. Constructing a desk is

//integras/b&h/Eer/Final_06-09-02/eerc016

16/46 Programmable controllers

Figure 16.79 Various graphic displays: (a) Allen Bradley touchscreen Panelview using block graphics; (b) high resolution Scada system; (c) the
ABB Tesselator. Photos courtesy of Co-Steel Sheerness, Scomagg and ABB

always a fine balance of time, choosing between waiting
until all the requirements are clear, and the minimum time
needed to make it. Modifications at the commissioning
stage rarely look neat. The displays on a graphical terminal
can be modified relatively easily, and, more importantly, the
modifications leave no scars. If the design of a normal desk
can only start when the desk contents are 95% finalised
(which is about right) a graphic screen can be started at
75% finalised. This flexibility is of great assistance as no
job is ever right first time.
There are disadvantages, though. The most important

of these is the limited amount of information that can be

displayed on a single screen. It is very easy to overcrowd a
screen (giving a screen similar to a page full of text on a
word processor) making it difficult for the operator to
identify critical items. A useful rule of thumb is not to use
more than 25±30% of the screen.
The effect of this is often a need to build up a hierachy of

screens; the top screen showing an overview, lower screens
showing more and more detail. The problem with this is the
time delay needed to shift through the screens. Direct screen
to screen movement is possible by calling for a page number
(which needs a good human operator memory, or a direc-
tory piece of paper, or wasted screen space) or by making all

//integras/b&h/Eer/Final_06-09-02/eerc016

Figure 16.79 (continued)

screen changes via an intermediate directory page (with
additional delay). These time delays are small (less than a
second typically) but the cumulative annoyance is large.
The time taken to update screen data can also be problem-

atical, particularly where a machine to machine link is
involved. Again a response time of around one second is
typical, but several seconds is by no means uncommon.
The use of a graphic terminal for fault finding on a fast
moving plant is not really feasible.
There are generally two types of graphic terminal. The

simplest, known as block graphics, has one store location
for each character position on the screen and approximates
to the old CGA standard on a personal computer.
The second type of display deals not with individual

characters, but with individual points on the screen called
`pixels'. A typical medium resolution screen will have
640 (horizontal) by 480 (vertical) pixels, a total of 307 200
points. Each of these can be accessed individually, allowing
lines to be drawn at any angle, fill patterns of any type to be
used and trend graphs of plant variables to be displayed.
Each individual pixel can have its own colour (from over
256 possible colours in some displays) and intensity.
The result is an almost photographic resolution. There are
additional costs, the most obvious of which is a large
store requirement. The system hardware and software is
more complex (and hence more expensive) but, perhaps
surprisingly, this is not apparent to the designer.
Programming for these screens is surprisingly simple with
instructions using keywords like

DRAW FROM < > to < >.

or pick and place functions similar to a good commercial
graphics package.
Supervisory Control and Data Acquisition (SCADA)

systems are based around graphical objects which are linked
to variables in the control systems. The state of the objects
on the screen (e.g. size, colour, rotation, etc.) can be changed
according to the the values of the variables in the control
systems giving a very visual image of the operation.

Graphics 16/47

The environment around a display needs to be carefully
considered. Most screens are mounted angled up, and are
prone to annoying reflections from overhead lights and
windows. Bright lighting (and above all direct sunlight)
can make a display impossible to read. Displays are also
adversely affected by magnetic fields. Close proximity to
electric motors, transformers or high current cables will
cause a picture to wobble and the colours to change. The
effect can be overcome by screening the monitor with a
mu-metal cage). Flat screen TFT or LCD displays do not
suffer from this effect.
The size and weight of the monitors are often overlooked

making them difficult to mount neatly, and even more diffi-
cult to change. Access should be made as easy as possible;
trying to hold a 25 kg display in place with one hand whilst
undoing interminably long mounting screws is not much fun.
Displays fail, and the implication of this needs to be con-

sidered in the design. If all the plant control is performed
by screens, what will happen during the ten or so minutes it
will take to locate a spare and change the faulty unit? Often
dual displays are used to overcome this problem.
The operator will obviously need to input data and initi-

ate actions. Keyboards are one approach, but many people
are nervous of them and the cable connecting the keyboard
always seems prone to damage. In dirty environments keys
can become blocked with dirt and membrane keypads with
tactile (feel) feedback should be used.
If the operator has to access points anywhere on the

screen, a tracker ball is a useful device. Rather like an upside
down mouse it controls the movement of a cursor on the
screen. All normal actions can be performed with three but-
tons on the trackerball and a numerical keypad. Trackerballs
work surprisingly well in dirty environments as they are open
underneath and dirt seems to fall straight through. Mice
perform a similar function but are vulnerable to damage
and dirt and seem more suited to an office environment.
A final consideration is security. Most modern graphics

systems are based on good quality personal computers. These
have value outside of industry and are vulnerable to theft.
Often is it is not the PCs or screens which are stolen, but the

//integras/b&h/Eer/Final_06-09-02/eerc016

16/48 Programmable controllers

internal motherboards and memory cards. Suitable security
methods should be used if a PC based system is to be
left unattended for a period of time (e.g. during a Christmas
shutdown). Needless to say backups should not be stored
on the same PC as the original system.

16.7 Software engineering

Any project goes through six stages during its life. The first
of these, analysis, is studying the application to understand
what is required. This is by far the most difficult stage as the
project requirements are usually unclear. Most projects that
come unstuck do so because this first stage has been cut
short or overlooked.
Next comes specification, which is documenting the

analysis so everyone concerned can agree what is to be done
and what the end result should be. If you can't produce
a specification, how can you sensibly design it? Never say
`we'll sort that out later' because later becomes 3 a.m. as the
plant starts up. The final testing procedures must also be
defined at the specification stage; again if you don't know
how you will test it, how will you know if it's working prop-
erly? Defining testing procedures in the cold light of
day several months before the final frantic rush to meet a
deadline also helps the poor commissioning engineer to
resist the pleas for a premature start up.
The importance of these two first stages cannot be over-

emphasised, too often the users do not know, or do not say,
what they want, but once the project is complete they are
sure it wasn't that. With these first two difficult stages over,
the rest of the project becomes much easier!
The design stage can now start, (simple with a good speci-

fication) followed by installation. Next comes commissioning.
These can also be difficult times, as in any project the con-
trol engineer ends up collecting everybody's delays and
comes under pressure to `get the plant away'. It is here that
the advantage of the test schedule from the specification
stage will be invaluable.
It is not generally understood that commissioning

involves both positive and negative testing. Positive testing
is obvious; it is ensuring that when the firkling button is
pressed the plant firkles. Practically everyone sees the need
for this. Negative testing is less obvious; it is ensuring that
the control system deals correctly with all the unlikely cir-
cumstances and fault conditions. Negative testing takes far
far longer, because there are many more fault modes than
healthy modes. It is very common for people to say `it works,
let's go' when only the positive testing has been done. Try to
resist this pressure, at best it can lead to damaged plant a
few years hence, at worse some safety features could be
overlooked.
Finally the plant is handed over to the maintenance

department. In commercial software it is generally thought
that over 50% of the effort goes into maintenance as
changes are made to meet new requirements or correct the
inevitable bugs. For easy maintenance all the documenta-
tion must be complete and up to date.

16.8 Safety

Most industrial processes are hazardous, and the safety of
all personnel must be of prime importance. This section is a
personal view and can only give a simple discussion of
safety considerations. The topic of safety is covered by
both criminal and civil law. The designer and user of any

system must therefore consult the relevant legislation and
codes of practice to ensure compliance.
Every single person has a safety responsibility. Employers

have a `duty of care' for their employees and the public and
must ensure the plant is kept in a safe condition, safe working
procedures are devised for all conceivable activities,
and training in these procedures provided for all relevant
employees. Suppliers must ensure their equipment meets
safety criteria, and draw the attention of purchasers to
unavoidable hazards (protection and labelling of parts which
are live during normal operation for example). Employees
must follow safety procedures and not expose themselves
(or others) to danger. These responsibilities are covered by
the Health and Safety at Work Act 1974 (HASWA) which
makes the universal responsibility for safety absolutely clear.
More recently in 1992 a block of EEC Health & Safety

Regulations (commonly known as the `six pack') introduced
the idea of risk assessment. This recognises the need to
balance the cost and complexity of the safety system against
both the likelihood and severity of injury. The procedures
outlined use common terms with specific definitions:

Hazard The potential to cause harm.
Risk A function of the likelihood of the hazard

occurring and the severity.
Danger The risk of injury.

and outlines procedures to achieve acceptable safety stan-
dards. Risk assessment is a legal requirement under most
modern legislation, and is covered in detail in standard
prEN1050 `Principles of Risk Assessment'.
A Health & Safety Executive study of safety in control

systems (`Out of Control' HSE books 1995 ISBN
0717608476) makes worrying reading. It suggests that
more than 60% of safety related failures are introduced
into a system before it is taken into service for the first
time. Approximately 44% of safety incidents come from
specification errors, 15% from design errors and 6% from
poorly thought out changes during commissioning.
The inclusion of a programmable controller brings addi-

tional hazards (and solutions) which must be recognised.
A PLC can introduce potentially dangerous situations in
different ways. The first (and probably commonest) route
is via logical errors in the program. These can be the result
of oversight, or misunderstanding, on behalf of the original
designer who did not appreciate that this set of actions
could be dangerous, or by later modifications by people
who deliberately (or accidentally) removed some protection
to overcome a failure in the middle of the night. `Midnight
programming' is particularly worrying as usually the only
person who knows it has been done is the offending person,
and the danger may not be apparent until a considerable
time passes and the hazardous condition occurs.
The second possible cause is failure of the input and out-

put modules; in particular the components connected
directly to the plant which will be exposed to high voltage
interference (and possibly direct connected high voltages in
the not unlikely event of cable damage). Output modules
can also suffer high currents in the (again not unlikely)
event of a short circuit. Typical output devices are triacs,
thyristors or transistors. The failure mode of these cannot
be predicted; all can fail short circuit or open circuit. In
these failure conditions the PLC would be unable to control
the outputs. Similarly an input signal card can fail in either
the `on' or `off ' state, leaving the PLC misinterpreting a
possibly important signal.

//integras/b&h/Eer/Final_06-09-02/eerc016

Safety 16/49

The next failure mode is the PLC itself. This can be
further divided into hardware, software and environmental
failures. A hardware failure is concerned with the machine
itself; its power supply, its processor, the memory (which
contains the `personality' of the PLC, the user's program,
and the data storage). Some of these failures will have
predictable effects; a power supply failure will cause all out-
puts to de-energise, and the PLC supplier will have included
memory checks in the design. Environmental effects arise
from peculiarities in the installation such as dust, humidity,
temperature (and rapid temperature changes) possible
water ingress and vibration, and these can result in unex-
pected operation of output devices.
The final cause is electrical interference (usually called

noise). Internally almost all PLCs work with 5 V signals, but
are surrounded by high voltage high current devices. Noise
can cause input signals to be misread by the PLC, and in
extreme cases can corrupt the PLC's internal memory. PLCs
generally have internal protection against memory corruption
and noise on remote I/O serial lines, so the usual effect of
noise is to cause a PLC to stop (and outputs to de-energise).
This cannot, however, be relied upon.
Figure 16.80 shows a normal motor starter circuit built

without a PLC. Safety precautions here are:

. Isolation switch at the MCC removes the supply for
maintenance work.

. Normally closed contacts on the stop and emergency
stop buttons. A broken wire will look like a stop button
being pressed, as will loss of the control supply.

. If the emergency stop is pressed and released, the motor
does not restart.

. Isolation and emergency stop have priority over start.

It is still possible to identify dangerous failure modes in
this system. The button head of the emergency stop button
could unscrew and fall off, or the contacts of the contactor
could weld made, or a short could occur between the cores
to the stop button but these failure modes are exceedingly
rare, and Figure 16.80 would be generally accepted as safe
for use in normal circumstances.

415v

I I I

Stop

Start

2

1

4 6

3 5

M
3

F

Door
isolator

C

Contactor

C

F Reset

Emergency stop
 relay

C E Stop

In Figure 16.81(a) the same functions have been provided
by an unsafe PLC system. To save costs the MCC door
isolator has been replaced by a simple switch which makes
to say `Isolate'. Similarly normally open contacts have been
used for stop and emergency stop. This is controlled by the
unsafe program of Figure 16.81(b).
It is important to realise that to the casual user, Figures

16.80 and 16.81 behave in an identical manner. The differ-
ences (and dangers) come in fault, or unusual, conditions.
In particular:

. A person using a programming terminal can force inputs
or outputs and over-ride the isolation. Although it is unli-
kely that anyone would do this deliberately, it is easy to
confuse similar addresses and swop digits by mistake
(forcing 0:23/01 instead of 0:32/01 for example).

. A loss of the input control supply during running will
mean the motor cannot be stopped by any means other
than totally removing the supply to the system.

. The system is very vulnerable to input and output card
faults.

None of these are apparent to the user until an emergency
occurs.

A prime rule, therefore, for using PLCs is:

`The system should be at least as safe as a conventional
system'

Figure 16.82(a) is a revised PLC version of Figure 16.80.
The isolator has been re-instated with an auxiliary contact
as PLC inputs, and normally closed contacts used for the
stop and emergency stop buttons. An auxiliary contact has
been added to the starter, and this is used to latch the PLC
program of Figure 16.82(b). The emergency stop is hard-
wired into the output and is independent of the PLC, and
on release the motor will not restart (because the latching
auxiliary contact in the program will have been lost). On loss
of control supply the program will think the stop button has
been pressed, and the motor will stop. Figure 16.82
thus behaves in failure as Figure 16.80.

L

N

Figure 16.80 A standard hardwired motor starter for a low risk application. This would normally be considered to be safe. In higher risk applications
there would probably be dual connections on the emergency stop button, dual contactors and the state of the contactors would be monitored by the
emergency stop relay

//integras/b&h/Eer/Final_06-09-02/eerc016

16/50 Programmable controllers

L

PLC

/pStart

Stop

Door Sw
made for
isolate

E Stop PB C
made when N
pressed

Contactor

(a)

Start Stop ESR SW C
|––] [––+––]/[–– – –]/[– –––]/[––––()––|

C
|––] [––+

(b)

Figure 16.81 An unsafe PLC based system totally reliant on software.
The dangers of this system only become apparent when failures occur

Although this example is simple, it illustrates the neces-
sary analysis and considerations that must be applied in
more complex systems.
Complex electronic systems can bring increased safety.

Consider a thyristor drive controlling the speed of a large
d.c. motor. In a typical arrangement there will be an upstream
a.c. contactor to enable the drive. Hardwire connection of an
emergency stop button into the a.c. contactor will obviously
stop the drive, but the inertia of the motor and the load will
keep it rotating for several seconds. A thyristor drive, how-
ever, can stop the load in less than one second by regenera-
tively braking the motor, but this requires the drive to be alive
and functional. The operation of the emergency stop implies a
dangerous condition in which the fastest possible stop is
required. It is almost certain that at this time the drive con-
trols are functional and there are no `latent' faults.
Here the emergency stop can operate in two ways. First it

initiates an electronic regenerative crash stop via the control

L

Start

Stop

II I

2

1

4 6

3 5

Door Sw

C Aux

contact

ESR

F F

(a)

system which should stop the drive in less than one second.
The emergency stop also releases a delay drop out hardwire
relay set for 1.5 s which releases the a.c. contactor. This
gives the safest possible reaction to the pressing of
the emergency stop button. Safety considerations do not
therefore, explicitly require relay based, non electronic
hardware, but the designer must be prepared to justify the
design decisions and the methods used.
Where complex control systems are to be used, a com-

mon method of improving safety is to duplicate sensors,
control systems and actuators. This is known as redundancy.
A typical application occurs in boilers where feed water is
held in a drum. Deviations in water level are dangerous; too
low and the boiler will overheat, possibly to the point of
melting the boiler tubes; too high and water can be carried
over to the downstream turbine with risk of catastrophic
blade failure. High and low level sensors are therefore
usually provided with each being duplicated. The safety
system reacts to any fault signal, so two sensors have to
fail for a dangerous condition to arise. If the probability of
a sensor failure in time T is p (where 0 <& p <& 1) the prob-
ability of both failing is p 2. In a typical case, p will be of the

2order of 10�4 failure per year giving p of 10�8.
There are two disadvantages. The first is that a sensor can

fail into a permanently safe signal state, and this failure will
be `latent', i.e. hidden from the user with the plant running
on one sensor. The second problem is that the plant relia-
bility will go down, since the number of sensors goes up and
any sensor failure can result in a shutdown. Both of these
effects can be reduced by using `majority voting' circuits,
taking the vote of two out of three or three out of five signals.
Redundancy can be defeated by `common mode' failures.

These are failures which affect all the parallel paths simulta-
neously. Power supplies, electrical interference on cables
following the same route and identical components from the
same batch from the same supplier are all prone to common
mode failure. For true protection, diverse redundancy must be
used, with differences in components, routes and implemen-
tation to reduce the possibility of simultaneous failure.
To give true redundancy it is sensible to provide duplication

in the control system as well to protect against hardware
and software failures in the system itself. Duplicate
control schemes, though, are vulnerable to a form of common
mode failure called a `systematic failure'. Suppose duplicated
temperature sensors are compared, inside a PLC program,
with an alarm temperature. Suppose both are identical
devices, running the same program containing a bug
which inadvertently (but rarely so it does not show up

E Stop
L

/p

PLC

Emergency stop
relay

Start Stop ESR SW F C
|––] [––+––] [––––] [––––] [––––] [––––()––|

C
Aux

|––] [––+

(b)

N

Reset

C

N

Contactor

Figure 16.82 A safe PLC system for low risk applications. As for Figure 16.80 more features could be added if the risk was higher

//integras/b&h/Eer/Final_06-09-02/eerc016

Safety 16/51

during simple testing) changes the setting for the alarm
temperature (from 60 �C say, to 32 053 �C). Such an effect
could easily occur by a mistype in a MOVE instruction in a
totally unrelated part of the program. This error will affect
both control systems, and totally remove the redundancy.
If reliance is being made on redundant control systems,

therefore, they should be totally different; different
machines with different I/O and different programs written
by different people with the machines installed running on
different power supplies with different types of sensors con-
nected by different cable routes.
The Health and Safety Executive (HSE) became

concerned about the safety of direct plant control with
computers, and produced an occasional paper OP2
`Microprocessors in Industry' in 1981. This was followed in
1987 by two booklets `Programmable Electronics Systems
in Safety Related Applications'. Book 1 (an Introductory
Guide) is a general discussion of the topic, and Book 2
(General Technical Guidelines) goes through the necessary
design stages. They suggest a five stage process:

Figure 16.83 Safety critical input with the Siemens 115F PLC

(i)	 Perform a hazard analysis of the plant or process;
(ii)	 From this, identify which parts of the control system

are concerned with safety and which are concerned
purely with efficient production. The latter can be
ignored for the rest of the analysis;

(iii) Determine the required safety level (based on accepted
attainable standards or published material);

(iv) Design safety systems to meet	 or exceed these stan-
dards; and

(v)	 Assess the achieved level (by using predicted probab-
ility of failure for individual parts of the design). Revise
the design if the required level has not been achieved.

The books stress the importance of `Quality' in the design;
quality of components, quality of the suppliers and so on.
The IEC standard IEC 61508 Functional Safety of

Electrical/Electronic/Programmable electronic safety related
systems covers similar grounds to the HSE books. This is
based on the ideas of safety functionality (what it is designed
to protect against and how the protection is achieved

Figure 16.84 Safety critical output with the Siemens 115F PLC

//integras/b&h/Eer/Final_06-09-02/eerc016

16/52 Programmable controllers

e.g. `open quench valve if temperature rises above 250�C') and
the Safety Integrity Level (or SIL) which, somewhat simpli-
fied, is the probability, p, that the safety system will fail to
operate on demand. The SIL covers the entire safety system
including sensors, control system, and actuators. Four
SILs are defined from a basic SIL-1 (10�1 >& p >10�2) to
SIL-4 (10�4 >& p >10�5). The required SIL is determined
from a risk assessment of the system. For continuous
protection on a hazardous plant the normal requirement is
SIL-3 or SIL-4. Guidelines for architectural constraints
(such as keeping the safety system separate from the control
system, and using redundancy) are also given. It is probable
that IEC 61508 will become a European standard in the
near future, and the two HSE books are being re-written
to incorporate ideas from IEC 61508.
Surprisingly some fieldbus systems (e.g. specialist versions

of Profibus and SafetyBus from Pilz) can achieve SIL-3
which makes a fieldbus safety system attractive in hazardous
applications. Extreme care must, of course, be taken.
In America, the Instrument Society of America (ISA)

standard S84 follows broadly similar lines to the HSE
guidelines and IEC 61508.
Because the HSE books, IEC 61508 and S84 are stan-

dards they have the legal status of guidance notes and
there is no formal requirement to follow them. In the event
of an incident, however, the designers and users must be
prepared to justify the actions they have taken and confor-
mance with good practice is a legal defence.
Very high safety levels can be achieved with some PLCs.

Siemens market the 115F PLC which has been approved
by the German TUV Bayern (Technical Inspectorate of
Bavaria) for use in safety critical applications such as trans-
port systems, underground railways, road traffic control

and public elevators. The system is based on two 115 PLCs
and is a model of diverse redundancy. The two machines
run diverse system software and check each other's actions.
There is still a responsibility on the user to ensure that no
systematic faults exist in the application software.
Inputs are handled as Figure 16.83. Diverse (separate)

sensors are fed from a pulsed output. A signal is dealt with
only if the two processors agree. Obviously the choice of
sense of the signal for safety is important. For an overtravel
limit, for example, the sensors should be made for healthy
and open for a fault.
Actuators use two outputs (of opposite sense) and two

inputs to check the operation as Figure 16.84. Each
sub-unit checks the operation of the other by brief pulsing
of the outputs allowing the circuit to detect cable damage,
faulty output modules and open circuit actuators. If, for
example, output B fails on, both inputs A and B will go
high in the Off state (but the actuator will safely de-energise.)
The operation of Figures 16.83 and 16.84 is straight-

forward, but it should not be taken as an immediately
acceptable way of providing a fail-safe PLC. The 115F
is truly diverse redundant, even the internal integrated
circuits are selected from different batches and different
manufacturer, and it contains well tested diverse self checking
internal software. A DIY system would not have these
features, and could be prone to common mode or systematic
failures.
A PLC system is an electrical system, and is subject

to the same legislation as conventional electrical schemes.
Apart from the Health and Safety at Work Act, the designer
should also observe the Institute of Electrical Engineers
Wiring Regulations, and the Electricity at Work
Regulations 1990.

