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11.1 INTRODUCTION

A radar detects or tracks a target, and sometimes can identify it, only because
there is an echo signal. It is therefore critical in the design and operation of radars
to be able to quantify or otherwise describe the echo, especially in terms of such
target characteristics as size, shape, and orientation. For that purpose the target
is ascribed an effective area called the radar cross section. It is the projected area
of a metal sphere which would return the same echo signal as the target had the
sphere been substituted for the target.

Unlike the echo of the sphere, however, which is independent of the viewing
angle, the echoes of all but the simplest targets vary significantly with orienta-
tion. As such, one must mentally allow the size of this fictitious sphere to vary as
the aspect angle of the target changes. As will be shown, the variation can be
quite rapid, especially for targets many wavelengths in size.

The echo characteristics depend in strong measure on the size and nature of
the target surfaces exposed to the radar beam. The variation is small for electri-
cally small targets (targets less than a wavelength in size) because the incident
wavelength is too long to resolve target details. On the other hand, the flat, singly
curved and doubly curved surfaces of electrically large targets each give rise to
different echo characteristics. Reentrant structures like jet engine intakes and ex-
hausts generally have large echoes, and even the trailing edges of airfoils can be
significant echo sources. The characteristics of some common targets and target
features are discussed in Sec. 11.2.

The radar cross sections of simple bodies can be computed exactly by a solu-
tion of the wave equation in a coordinate system for which a constant coordinate
coincides with the surface of the body. The exact solution requires that the elec-
tric and magnetic fields just inside and just outside the surface satisfy certain con-
ditions that depend on the electromagnetic properties of the material of which the
body is made.

While these solutions constitute interesting academic exercises and can, with
some study, reveal the nature of the scattering mechanisms that come into play,
there are no known tactical targets that fit the solutions. Thus, exact solutions of



the wave equation are, at best, guidelines for gauging other (approximate) meth-
ods of computing scattered fields.

An alternative approach is the solution of the integral equations governing the
distribution of induced fields on target surfaces. The most useful approach at so-
lution is known as the method of moments, in which the integral equations are
reduced to a system of linear homogeneous equations. The attraction of the
method is that the surface profile of the body is unrestricted, allowing the com-
putation of the scattering from truly tactical objects. Another is that ordinary
methods of solution (matrix inversion and gaussian elimination, for example) may
be employed to effect a solution. The method is limited by computer memory and
execution time, however, to objects a few dozen wavelengths in size at best.

Alternatives to these exact solutions are several approximate methods that
may be applied with reasonable accuracy to electrically large target features.
They include the theories of geometrical and physical optics, the geometrical and
physical theories of diffraction, and the method of equivalent currents. These ap-
proximations are discussed in Sec. 11.3. Other approximate methods not dis-
cussed here are explored in detail in some of the references listed at the end of
this chapter.

The practical engineer cannot rely entirely on predictions and computations
and must eventually measure the echo characteristics of some targets. This may
be done by using full-scale test objects or scale models thereof. Small targets of-
ten may be measured indoors, but large targets usually must be measured on an
outdoor test range. The characteristics of both kinds of test facilities are de-
scribed in Sec. 11.4.

Control of the echo characteristics of some targets is of vital tactical impor-
tance. There are only two practical ways of doing so: shaping and radar absorb-
ers. Shaping is the selection or design of surface profiles so that little or no en-
ergy is reflected back toward the radar. Because target contours are difficult to
change once the target has become a production item, shaping is best imple-
mented in the concept definition stage before production decisions have been
made. Radar-absorbing materials actually soak up radar energy, also reducing the
energy reflected back to the radar. However, the application of such materials
can be expensive, whether gauged in terms of nonrecurring engineering costs,
lifetime maintenance, or reduced mission capabilities. The two methods of echo
control are discussed in Sec. 11.5.

Unless otherwise noted, the time convention used in this chapter is exp
(- uof), with the time dependence suppressed in all equations. Readers who pre-
fer the exp (jut) time convention may replace i by -j wherever it appears.

77.2 THECONCEPTOFECHOPOWER

Definition of RCS. An object exposed to an electromagnetic wave disperses
incident energy in all directions. This spatial distribution of energy is called
scattering, and the object itself is often called a scatterer. The energy scattered
back to the source of the wave (called backscattering) constitutes the radar
echo of the object. The intensity of the echo is described explicitly by the radar
cross section of the object, for which the abbreviation RCS has been generally
recognized. Early papers on the subject called it the echo area or the effective
area, terms still found occasionally in contemporary technical literature.

The formal definition of radar cross section is
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where E0 is the electric-field strength of the incident wave impinging on the target
and Ex is the electric-field strength of the scattered wave at the radar. The deri-
vation of the expression assumes that a target extracts power from an incident
wave and then radiates that power uniformly in all directions. Although the vast
majority of targets do not scatter energy uniformly in all directions, the definition
assumes that they do. This permits one to calculate the scattered power density
on the surface of a large sphere of radius R centered on the scattering object. R is
typically taken to be the range from the radar to the target.

The symbol a has been widely accepted as the designation for the RCS of an
object, although this was not so at first.1'2 The RCS is the projected area of a
metal sphere which is large compared with the wavelength and which, if substi-
tuted for the object, would scatter identically the same power back to the radar.
The RCS of all but the simplest scatterers fluctuates greatly with the orientation
of the object. As such, this imaginary sphere would have to expand and contract
with changing target orientation to represent the amplitude fluctuations displayed
by most objects.

The limiting process in Eq. (11.1) is not always an absolute requirement. In
both measurement and analysis, the radar receiver and transmitter are usually
taken to be in the far field of the target (discussed in Sec. 11.4), and at that dis-
tance the scattered field Ex decays inversely with the distance R. Thus, the R2

term in the numerator of Eq. (11.1) is canceled by an identical but implicit R2

term in the denominator. Consequently the dependence of the RCS on /?, and the
need to form the limit, usually disappears.

Radar cross section is therefore a comparison of the scattered power density
at the receiver with the incident power density at the target. An equally valid def-
inition of the RCS results when the electric-field strengths in Eq. (11.1) are re-
placed with the incident and scattered magnetic-field strengths. It is often neces-
sary to measure or calculate the power scattered in some other direction than
back to the transmitter, a bistatic situation. A bistatic RCS may be defined for
this case as well as for backscattering, provided it is understood that the distance
R is measured from the target to the receiver. Forward scattering is a special case
of bistatic scattering in which the bistatic angle is 180°, whence the direction of
interest is along the shadow zone behind the target.

The shadow itself can be regarded as the sum of two fields of nearly equal
strength but 180° out of phase. One is the incident field, and the other is the scat-
tered field. The formation of the shadow implies that the forward scattering is
large, which is indeed the case. The fields behind the target are hardly ever pre-
cisely zero, however, because some energy usually reaches the shadow zone via
diffraction from the sides of the target.

While there are few two-dimensional (infinite cylindrical) objects in the phys-
ical world, analyses of the scattering from two-dimensional structures are very
useful. A two-dimensional object is, by definition, a cylinder formed by the pure
translation of a plane curve to plus and minus infinity along an axis perpendicular
to the plane of that curve. Many scattering problems become analytically tracta-
ble when there is no field variation along the cylindrical axis, such as when the
infinite structure is illuminated by a plane wave propagating at right angles to the
cylinder axis.

In this case, one defines a scattering width instead of a scattering area,
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where p is the distance from the cylindrical body to a remove receiver, measured
perpendicularly to the cylindrical axis. We have appended the subscript 2D to
distinguish the scattering width of Eq. (11.2), whose dimension is length, from the
scattering cross section of Eq. (11.1), whose dimension is the square of length.

By virtue of the linear properties of electromagnetic fields, the solutions of
two-dimensional problems may be resolved into two cases, one each for the elec-
tric field or the magnetic field parallel to the cylindrical axis. The ratio IVA . I / IV0I
thus represents either the incident and scattered electric fields or the incident and
scattered magnetic fields, depending on the case at hand. These two cases are
often called E and H polarizations, respectively. They are also known as TM and
TE polarizations.

Practical three-dimensional problems often involve truncated segments of
two-dimensional structures, such as shown in Fig. 11.1. In the practical world,
those segments may be viewed at angles other than incidence perpendicular to

the cylindrical axis, as implied in the solution
of two-dimensional problems. The three-
dimensional RCS of a truncated two-
dimensional structure may be found from the
approximate relationship

2€2a2D sin (M sin T) 2

° = — Ws^- (1L3)

where € is the length of the truncated struc-
ture, (T20 is its two-dimensional scattering
width (obtained for the infinite structure), and
T is the tilt angle of the segment measured
from broadside incidence. This approximation
assumes that the amplitudes of the fields in-
duced on the three-dimensional body are iden-
tically those induced on the corresponding
two-dimensional structure and that the tilt an-
gle influences only the phase of the surface
fields induced on the body. The expression
should not be used for large tilt angles, for
which the amplitudes obtained from the two-
dimensional solution no longer apply to the
three-dimensional problem.

Examples of RCS Characteristics

Simple Objects. Because of its pure radial
symmetry, the perfectly conducting sphere is
the simplest of all three-dimensional
scatterers. Despite the simplicity of its geo-
metrical surface, however, and the invariance
of its echo with orientation, the RCS of the
sphere varies considerably with electrical size.

FIG. 11.1 A three-dimensional ob-
ject whose profile does not vary along
its length, such as the truncated rec-
tangular cylinder on the left, is a finite
chunk of an infinite (two-dimensional)
structure having the same profile,
such as the one on the right. Equation
(11.3) relates the RCS of the two
structures.



The exact solution for the scattering by a conducting sphere is known as the Mie
series,3 illustrated in Fig. 11.2.

FIG. 11.2 RCS of a perfectly conducting sphere as a
function of its electrical size ka.

The parameter ka = 2WX is the circumference of the sphere expressed in
wavelengths, and the RCS is shown normalized with respect to the projected area
of the sphere. The RCS rises quickly from a value of zero to a peak near ka = I
and then executes a series of decaying undulations as the sphere becomes elec-
trically larger. The undulations are due to two distinct contributions to the echo,
one a specular reflection from the front of the sphere and the other a creeping
wave that skirts the shadowed side. The two go in and out of phase because the
difference in their electrical path lengths increases continuously with increasing
ka. The undulations become weaker with increasing ka because the creeping wave
loses more energy the longer the electrical path traveled around the shadowed side.

The log-log plot of Fig. 11.3 reveals the rapid rise in the RCS in the region O <
ka < 1, which is known as the Rayleigh region. Here the normalized RCS in-
creases with the fourth power of ka, a feature shared by other electrically small
or thin structures. The central region characterized by the interference between
the specular and creeping-wave contributions is known as the resonance region.
There is no clear upper boundary for this part of the curve, but a value near
ka = 10 is generally accepted. The region ka > 10 is dominated by the specular
return from the front of the sphere and is called the optics region. For spheres of
these sizes the geometric optics approximation ira2 is usually an adequate repre-
sentation of the magnitude of the RCS.

The echoes of all scattering objects, and not just the perfectly conducting
sphere, can be grouped according to the electrical-size characteristics of the ob-
ject. The dimensions of a Rayleigh scatterer are much less than a wavelength,
and the RCS is proportional to the square of the volume of the body. Resonant
scatterers are generally of the order of one-half to 10 wavelengths in size, for
which neither Rayleigh nor optics approximations may be very accurate. In the
optics region several approximations are available for making estimates or pre-
dictions (see Sec. 11.3).
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FIG. 11.3 Log-log version of the data displayed in Fig. 11.2.

The echo characteristics of permeable (dielectric) bodies can be more compli-
cated than those of perfect conductors because energy may enter the body and
suffer several internal bounces before emerging. An example is the dielectric
sphere whose RCS is plotted in Fig. 11.4. Because the dielectric material is
slightly lossy, as indicated by the nonzero imaginary component of the index of
refraction, the RCS of the sphere decays gradually with increasing electrical size.
The RCS of small dielectric bodies does not exhibit this complexity, on the other
hand, because the sources of reflection are too close to each other to be resolv-
able by the incident wave. An example is the two-dimensional Rayleigh region
RCS of a thin dielectric cylinder, plotted in Fig. 11.5. The thin dielectric cylinder
has been used to model the target support lines sometimes employed in RCS
measurements.5 Note that the ^-polarized echo is barely 6 dB less than that for
E polarization for this particular dielectric constant.

The thin wire (a metal dipole) can have a complicated pattern, as shown in
Fig. 11.6. The RCS of the wire varies with the wire length, the angle subtended
by the wire and the line of sight, and on that component of the incident electric
field in the plane containing the wire and the line of sight. The wire diameter has
only a minor influence if it is much smaller than the wavelength. In addition to
the prominent broadside lobe at the center of the pattern, there are traveling-
wave lobes near the left and right sides. The traveling-wave lobes tend to disap-
pear as the dipole becomes shorter and are closely related to those excited on
traveling-wave antennas.
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FIG. 11.4 RCS of a lossy dielectric sphere with n = 2.5 + /0.01. (Copyright 1968
IEEE.4}
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FIG. 11.5 RCS of a slender dielectric cylinder with er = 3.0.
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FIG. 11.6 Measured RCS pattern of a dipole 5.221X long. (Courtesy of
University of Michigan Radiation Laboratory.6)

Figure 11.7 shows the broadside resonances of a wire dipole as a function of
dipole length. The first resonance occurs when the dipole is just under a half
wavelength long, and its magnitude is very nearly X2. Other resonances occur
near odd multiples of a quarter wavelength, with plateaus of nearly constant re-

j0/x

FIG. 11.7 Measured broadside returns of a thin dipole. (Courtesy of
University of Michigan Radiation Laboratory.6)
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turn between the resonant peaks. These plateaus rise as the dipole becomes
thicker, and the resonances eventually disappear.

Bodies considerably thicker than the thin wire also support surface traveling
waves that radiate power in the backward direction. An example is the ogive, a
spindle-shaped object formed by rotating an arc of a circle about its chord. Figure
11.8 is the RCS pattern of a 39-wavelength 15° half-angle ogive recorded for hor-
izontal polarization (incident electric field in the plane of the ogive axis and the
line of sight). The large lobe at the right side of the pattern is a specular echo in
the broadside sector, and the sequence of peaks at the left side is the contribution
of the surface traveling wave near end-on incidence. Note that the RCS is ex-
tremely small (not measurable in this case) at precisely end-on incidence. Theo-
retical predictions in the end-on region closely match the measured pattern for
this particular body.

ANGULAR ORIENTATION B
FIG. 11.8 Measured RCS pattern of a 39-wavelength 15° half-angle metal ogive. (Copy-
right 1958, IEEE.7)
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The dominant scattering mechanisms for the right circular conducting cone are
the tip and the base. The return from the tip is very small in the nose-on region,
and the RCS pattern is dominated by the echo from the base. Figures 11.9 and
11.10 are patterns of the RCS of a 15° (half-angle) cone with a base circumference
of 12.575X. Both patterns were measured as the cone was rotated about a vertical
axis parallel to the base of the cone. The transmitted and received electric polar-
ization was in the plane swept out by the cone axis (horizontal polarization) for
Fig. 11.9 and was perpendicular to that plane (vertical polarization) for Fig.
11.10.

Nose-on incidence lies at the center of the patterns, and the sharp peaks near
the sides are the specular returns from the slanted sides of the cone, also called
specular flashes. The RCS formula for singly curved surfaces given in Table 11.1
may be used to predict the amplitudes of the specular flash within a fraction of a
decibel. At precisely nose-on incidence the RCS must be independent of polar-
ization because the cone is a body of axial symmetry. This may be verified by
comparing the nose-on values in the two figures. At this angle the entire ring of
the base of the cone is excited, but as the aspect angle swings away from nose-

ANGLE

FIG. 11.9 Measured RCS of a 15° half-angle cone (horizontal polarization). The base circum-
ference is 12.575X.. The heavy horizontal line indicates 10\2. (Courtesy of University of
Michigan Radiation Laboratory.*}
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FIG. 11.10 Measured RCS of a 15° half-angle cone (vertical polarization). The base circumfer-
ence is 12.575X. The heavy horizontal line indicates 1OX2. (Courtesy of University of Michigan
Radiation Laboratory.8)

TABLE 11.1 RCS Approximations for Simple Scattering Features

NOTES:
1. LOS = line of sight.
2. Aeff = effective area contributing to multiple internal reflections.
3 . A = actual area of the plate.
4. a = mean radius of curvature; € = length of slanted surface.
5. Ci, a2 - principal radii of surface curvature in orthogonal planes.
6. C — edge length.
7. a = radius of edge contour.
8. ot = half angle of the cone.

RE
LA

TI
VE

 P
OW

ER
 (

dB
)

Scattering feature

Corner reflector
Flat plate
Singly curved surface
Doubly curved surface
Straight edge
Curved edge

Cone tip

Orientation (1)

Axis of symmetry along LOS
Surface perpendicular to LOS
Surface perpendicular to LOS
Surface perpendicular to LOS
Edge perpendicular to LOS
Edge element perpendicular to
LOS

Axial incidence

Approximate RCS

4irA2
eff/X

2

4irA2/X2

2irfl€2/X
TTa1^2
€2/ir
a\!2

X2 sin4 (a/2)

(2)
(3)
(4)
(5)
(6)
(7)

(8)



on, the scattering from the base degenerates to a pair of flash points. They lie at
opposite ends of a diameter across the base in the plane containing the direction
of incidence and the cone axis.

The echoes from the flash points at the sides of the base weaken as the aspect
angle moves away from nose-on incidence, and the sidelobes seen at +13° in Fig.
11.10 are actually due to an interaction between the two flash points across the
shadowed side of the base. (The sidelobes disappear when a pad of absorber is
cemented to the base.8) The flash point at the far side of the base disappears
when the aspect angle moves outside the backward half cone, but the near flash
point remains visible, and its echo decays with increasing aspect angle. Trailing-
edge contributions like these are excited by that component of the incident elec-
tric field perpendicular to the edge; therefore they are stronger for horizontal in-
cident polarization than for vertical polarization.

A flat plate also can support multiple diffraction from one side of the plate to
the other, as shown in Fig. 11.11. The axis of rotation was in the plane of the
plate parallel to one edge; normal incidence to the incident wave is 0°, at the left
side of each chart, with edge-on incidence at 90° near the right side. The specular
return from the plate is the large peak at 0°, which is predicted with quite good
accuracy by the flat-plate formula given in Sec. 11.3. The edge-on return for ver-
tical polarization is well predicted by the straight-edge formula given in Table
11.1.

A Z I M U T H ASPECT A N G L E a (degrees)

FIG. 11.11 RCS of a square flat plate 6.5 in along a side; X = 1.28 in. (Copyright 1966, IEEE.9)
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These undulating patterns follow a sin x/x variation quite closely for aspect
angles out to about 30°, but beyond that angle the two patterns differ by progres-
sively wider margins. The sin x/x behavior is characteristic of a uniformly illumi-
nated aperture, but unlike the one-way illumination function encountered in an-
tenna work, the argument x for a flat plate includes a two-way (round-trip)
illumination function. Thus, the beamwidth of the echo response of a flat plate is
half the beamwidth of an antenna aperture of the same size. The prominent lobe
in the horizontal pattern at 68° is a surface traveling-wave lobe closely related to
the one appearing at nearly the same angle in the dipole pattern of Fig. 11.7.

In contrast to the pattern of a flat plate, the RCS pattern of a corner reflector
is quite broad. This is true because the corner reflector is a reentrant structure,
and no matter what its orientation (within limits, of course), internally reflected
waves are directed back toward the source of the incident wave. A corner reflec-
tor is formed by two or three flat plates intersecting at right angles, and waves
impinging on the first face are reflected onto the second; if there is a third face, it
receives waves reflected by the first two faces. The mutual orthogonality of the
faces ensures that the direction taken by waves upon final reflection is back to-
ward the source.

The individual faces of the corner reflector may be of arbitrary shape, but the
most common is an isosceles triangle for the trihedral corner; dihedral corners
typically have rectangular faces. The RCS of a corner reflector seen along its axis
of symmetry is identically that of a flat plate whose physical area matches the
effective area of the corner reflector. The magnitude of the echo may be deter-
mined by finding the polygonal areas on each face of the corner receiving waves
reflected by the other faces, and from which the final reflection is back toward
the source. The effective area is determined by summing the projections of the
areas of those polygons on the line of sight;10 the RCS is then found by squaring
that area, multiplying by 4ir and dividing by X2.

Figure 11.12 is a collection of RCS patterns of a trihedral corner reflector with
triangular faces. The reflector was fabricated of three triangular plywood panels,
metallized to enhance their surface reflectivities. The aperture exposed to the ra-
dar was therefore an equilateral triangle, as shown in Fig. 11.13. The eight pat-
terns in Fig. 11.12 were measured with the plane of the aperture tilted above or
below the line of sight by the angle c|>.

The broad central part of these patterns is due to a triple-bounce mechanism be-
tween the three participating faces, while the "ears" at the sides of the patterns are
due to the single-bounce, flat-plate scattering from the individual faces. Along the
axis of symmetry of the trihedral reflector in Fig. 11.13 (6 = 0°, <f> = 0°), the RCS is
TrfV3X2, where € is the length of one of the edges of the aperture. Not shown are the
echo reductions obtained when the trihedral faces are angled other than at 90° from
each other. The reductions resulting from changes in the angles of the corner faces
depend on the size of the faces expressed in wavelengths.11'12

The RCS of most of the simple scattering features discussed above may be
estimated by using the simple formulas listed in Table 11.1. The RCS of some
complicated targets may be estimated by representing the target as a collection of
features like those listed in Table 11.1, calculating the individual contributions,
and then summing the contributions coherently or noncoherently. More detailed
formulas are given in Sec. 11.3 that account for surface orientations not included
in Table 11.1.

Complex Objects. Objects like antennas, insects, birds, airplanes, and ships
can be much more complex than those discussed above, either because of the
multiplicity of scatterers on them or because of the complexity of their surface
profiles and dielectric constants. Insects are examples of the latter.
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FIG. 11.12 RCS patterns of a trihedral corner reflector. Edge of
aperture = 24 in; \ = 1.25 cm. (Reprinted with permission from
the AT&T Technical Journal, copyright 1947, AT&T.2)

FIG. 11.13 Coordinate system for the RCS patterns in
Fig. 11.12. (Reprinted with permission from the AT&T
Technical Journal, copyright 1947, AT&T.2)

Measured values for a dozen species are listed in Table 11.2. (The spider is an
arachnid, not an insect, of course.) The animals were live for the measurements
but had been drugged to immobilize them. Figure 11.14 shows the relationship
between the RCS and the mass of an insect, with the variation of a water droplet
shown for comparison. Similar comparisons have been made for both birds and
insects. The following values have been reported for the RCS of a man:16
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TABLE 11.2 Measured Insect RCS at 9.4 GHz13

NOTE: Original values reported in square centimeters have been converted here to dBsm.

MASS (g)
FIG. 11.14 Sample of measured RCS of insects as a function of
insect mass at 9.4 GHz, based on Riley's summary. The solid
trace is the calculated RCS of water droplets for comparison.
(Copyright, 1985 IEEE.14)
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Insect

Blue-winged locust
Armyworm moth
Alfalfa caterpillar butterfly
Honeybee worker
California harvester ant
Range crane fly
Green bottle fly
Twelve-spotted cucumber beetle
Convergent lady beetle
Spider (unidentified)

Length,
mm

20
14
14
13
13
13
9
8
5
5

Width,
mm

4
4
1.5
6
6
1
3
4
3
3.5

Broadside
RCS,
dBsm

- 30
- 39
- 42
-40
- 54
-45
-46
-49
- 57
- 50

End-on
RCS,
dBsm

- 40
- 49
- 57
-45
- 57
- 57
- 50
- 53
-60
- 52



Examples of the RCS of aircraft are shown in Figs. 11.15 through 11.17. The
B-26 pattern in Fig. 11.15 was measured at a wavelength of 10 cm (frequency of
about 3 GHz); the polar format is useful for display purposes but is not as con-
venient for detailed comparisons as a rectangular format is. The RCS levels
shown in the scale model Boeing 737 patterns of Fig. 11.16 are those at the mea-
surement frequency. To obtain the corresponding full-scale values, one must add
23.5 dB (10 log 225); the full-scale frequency is one-fifteenth of the measurement
frequency in this case, or 667 MHz. The patterns shown in Fig. 11.17 are medians
of RCS averages taken in cells 10° square. With modern data-collecting and -re-
cording equipment, it is feasible to plot measured results at much finer intervals
than are plotted in this figure. Note that the data is relative to 1 ft2; to convert the
displayed results to dBsm, one must subtract 10.3 dB (10 log 10.76 ft2/m2).

FIG. 11.15 Measured RCS pattern of a B-26 bomber at 10-cm wavelength. (Copy-
right 1947, McGraw-Hill Book Company}1}

Frequency, GHz

0.41
1.12
2.89
4.80
9.375

RCS, m2

0.033-2.33
0.098-0.997
0.140-1.05
0.368-1.88
0.495-1.22



8SO-FT RCS RANGE
FIG. 11.16 Measured RCS of a one-fifteenth scale model Boeing 737 commercial jetliner at 10
GHz and vertical polarization. (Copyright 1970, IEEE.1*)

Figure 11.18 charts the RCS of a ship measured at 2.8 and 9.225 GHz at hor-
izontal polarization. The data was collected by a shore-based radar instrumenta-
tion complex as the ship steamed in a large circle on Chesapeake Bay. The three
traces in these charts are the 80, 50, and 20 percentile levels of the signals col-
lected over aspect angle "windows" 2° wide. The patterns are not symmetrical,
especially at the higher frequency. Note that the RCS can exceed 1 mi (64.1
dBsm).

An empirical formula for the RCS of a naval ship is

a = 52/1/2D3/2 (11-4)

where/is the radar frequency in megahertz and D is the full-load displacement of
the vessel in kilo tons.2d'21 The relationship is based on measurements of several
ships at low grazing angles and represents the average of the median RCS in the
port and starboard bow, and quarter aspects, but excluding the broadside peaks.
The statistics include data collected at nominal wavelengths of 3.25, 10.7, and 23
cm for ship displacements ranging from 2 to 17 kilotons.

Figure 11.19 summarizes the general RCS levels of the wide variety of targets
discussed in this section, with the RCS of a metallic sphere shown as a function
of its volume for comparison. The ordinate is the RCS in square meters, and the
abscissa is the volume of the target in cubic feet. Because the chart is intended
only to display the wide range in RCS that may be encountered in practice, the
locations of targets on the chart are approximate at best. Within given classes of
target the RCS may be expected to vary by as much as 20 or 30 dB, depending on
frequency, aspect angle, and specific target characteristics. The reader requiring

RCS(dBsm)

RCS(dBsm)

PULSE-GATED COMPACT RCS RANGE FREQUENCY = 10.0 GHz
VERTICAL POLARIZATION
RADOME HAS BEEN REMOVED
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FIG. 11.17 Measured RCS of a C-54 aircraft in azimuth and elevation planes for linear and cir-
cular polarizations. Plotted values are the average RCS in a cell 10° in azimuth by 10° in elevation.
Azimuth patterns a and c are for a fixed elevation angle of -10°. The remaining patterns are in the
elevation plane for fixed nose-on or tail-on azimuths. The first and second subscripts give trans-
mitted and received polarizations; H and V indicate horizontal and vertical polarizations, and R
and L indicate right circular and left circular polarizations. (Courtesy of I. D. OUn and F. D.
Queen,19 Naval Research Laboratory.)

more explicit detail than this should consult referenced material at the end of this
chapter.

77.3 RCSPREDICTIONTECHNIQUES

Although the complexity and size of most scattering objects preclude the appli-
cation of exact methods of radar cross-section prediction, exact solutions for sim-
ple bodies provide valuable checks for approximate methods. The exact methods
are restricted to relatively simple or relatively small objects in the Rayleigh and
resonant regions, while most of the approximate methods have been developed
for the optics region. There are exceptions to these general limitations, of course;
the exact solutions for many objects can be used for large bodies in the optics
region if one uses arithmetic of sufficient precision, and many of the optics ap-
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FIG. 11.18 Measured RCS of a large naval auxiliary ship for horizontal incident polarization. Up-
per pattern (0) is for 2.8 GHz and the lower (b) for 9.225 GHz. Shown are the 80, 50, and 20 per-
centile levels based on the statistics of the data over 2° aspect angle windows.
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FIG. 11.19 Summary of RCS levels of targets dis-
cussed in this section. The locations of targets on the
chart are general indications only.

proximations can be extended to bodies of modest electrical size in the resonance
region. Low-frequency approximations developed for the Rayleigh region can ex-
tend nearly into the resonance region.

Exact Methods

Differential Equations. The exact methods are based on either the integral or
differential form of Maxwell's equations. Maxwell's four differential equations con-
stitute a succinct statement of the relationship between electric and magnetic fields
produced by currents and charges and by each other.22 The four equations may be
manipulated for isotropic source-free regions to generate the wave equation

V2F + ^2F = O (11.5)

where F represents either the electric field or the magnetic field. Equation (11.5)
is a second-order differential equation which may be solved as a boundary-value
problem when the fields on the surface of the scattering obstacle are specified.
The fields are typically represented as the sum of known and unknown compo-
nents (incident and scattered fields), and the boundary conditions are the known
relationships that must be satisfied between the fields (both electric and mag-
netic) just inside and just outside the surface of the obstacle exposed to the inci-
dent wave. Those boundary conditions are particularly simple for solid conduct-
ing or dielectric objects.

The boundary conditions involve all three components of the vector fields,
and the surface of the body must coincide with a coordinate of the geometrical
system in which the body is described. The solution of the wave equation is most
useful for those systems in which the equation is separable into ordinary differ-
ential equations in each of the variables. The scattered fields are typically ex-
pressed in terms of infinite series, the coefficients of which are to be determined
in the actual solution of the problem. The solution allows the fields to be calcu-
lated at any point in space, which in RCS problems is the limit as the distance
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from the obstacle becomes infinite. The product implied in Eqs. (11.1) and (11.2)
is then formed from the solution of the wave equation, yielding the scattering
cross section or the scattering width.

An example of a solution of the wave equation is the following infinite series
for a perfectly conducting sphere:

JL = Y ( ~ W(2n + 1) 2
v<? ^1 fn(ka)[kafn^(ka) - nfn(ka)]

The function fn(x) is a combination of spherical Bessel functions of order n and
may be formed from the two immediately lower order functions by means of the
recursion relationship

/„00 = 1!Li-Lf11^) _ fn_2(x) (i i .7)

An efficient computational algorithm may be developed by using the two lowest
orders as starting values,

MX) = 1

/,(jt) = (Ux) - i

Equation (11.6) was used to compute the RCS characteristics plotted in Figs.
11.2 and 11.3. The infinite summation is truncated at the point where additional
terms are negligible. The number of terms N required to compute the value of the
bracketed term in Eq. (11.6) to six decimal places for ka < 100 is approximately

N = 8.53 + l.2l(ka) - 0.001(M2 (11.8)

The constants in Eq. (11.8) are slightly different for ka > 100 and are lower in
value for fewer decimal places in the required accuracy.

The solution of the wave equation for the infinite, perfectly conducting circular
cylinder can be resolved into two cases, one each for the incident electric or mag-
netic field parallel to the cylinder axis. The expressions are slightly simpler than Eq.
(11.6) and involve cylindrical Bessel functions of the first and second kinds.23 Fig-
ures 11.20 and 11.21 illustrate the backscattering behavior for the two principal po-
larizations as a function of the electrical circumference of the cylinder.

The response for E polarization (Fig. 11.20) is much larger than geometric op-
tics value, ir#, when the cylinder is less than a fraction of a wavelength in cir-
cumference, but it approaches the geometric optics value within a few percent for
cylinders larger than about 2 wavelengths in circumference. The backscattering is
markedly different for AT polarization (Fig. 11.21), exhibiting the same kind of un-
dulations noted earlier in the case of the metallic sphere. These undulations are
caused by creeping waves that propagate around the rear of the cylinder just as
they do around a sphere. However, the peaks and nulls of the sphere and cylinder
interference patterns are not perfectly aligned with each another, suggesting that
the relative phase angles between the creeping waves and specular contributions
are slightly different for the two geometries.

The exact expression for the RCS of the dielectric cylinder is more compli-
cated than for the conducting cylinder, but it accounts for the fact that energy
penetrates the interior of the body. Unless the cylinder material is a perfect in-



ka

FIG. 11.20 Normalized scattering width of an infinite, per-
fectly conducting cylinder for E polarization (incident electric
field parallel to the cylinder axis). The normalization is with
respect to the geometric optics return from the cylinder.

ka
FIG. 11.21 Normalized scattering width of an infinite, perfectly
conducting cylinder for H polarization (incident magnetic field
parallel to the cylinder axis). The normalization is with respect to
the geometric optics return from the cylinder.

sulator, its index of refraction is a complex function whose imaginary part gives
rise to losses in the material. This in turn requires the computation of Bessel
functions of complex argument, not an insignificant undertaking. Quite simple
formulas for the scattering width may be obtained in the Rayleigh region, how-
ever, for which the cylinder diameter is much smaller than the incident wave-



length. Figure 11.5 illustrates the scattering behavior of very thin dielectric cyl-
inders.

Integral Equations. Maxwell's equations may also be manipulated to gener-
ate a pair of integral equations (known as the Stratton-Chu equations24),

E8 = ${ikZ0(n x H)I)I + (n x E) x Vi|/ + (n • E)Vi|/}dS (11.9)

H8 = #{ - ikYQ(n x E)<|i + (n x H) x Vi|/ + (n • H)Vi|i}dS (11.10)

where n is the unit surface normal erected at the surface patch dS and the
Green's function fy is

ty = eikr/4Tir (11.11)
The distance r in Eq. (11.11) is measured from the surface patch dS to the point
at which the scattered fields are desired. These expressions state that if the total
electric and magnetic field distributions are known over a closed surface 5, the
scattered fields anywhere in space may be computed by summing (integrating)
those surface field distributions.

The surface field distributions may be interpreted as induced electric and mag-
netic currents and charges, which become unknowns to be determined in a solu-
tion. The two equations are coupled because the unknowns appear in both. Un-
known quantities also appear on both sides of the equations because the induced
fields include the known incident field intensity and the unknown scattered field
intensity. The method of solution is known as the method of moments (MOM),25

reducing the integral equations to a collection of homogeneous linear equations
which may be solved by matrix techniques.

The solution of the integral equations begins with the specification of the re-
lation between the incident and scattered fields on the surface S, as governed by
the material of which the object is made. If the body is perfectly conducting or if
the electric and magnetic surface fields can be related by a constant (the surface
impedance boundary condition), the equations become decoupled, and only one
or the other need be solved. If the body is not homogeneous, the fields must be
sampled at intervals within its interior volume, complicating the solution.

Once the boundary conditions have been specified, the surface S is split into a
collection of small discrete patches, as suggested in Fig. 11.22. The patches must
be small enough (typically less than 0.2X) that the unknown currents and charges
on each patch are constant or at least can be described by simple functions. A
weighting function may be assigned to each patch, and the problem is essentially
solved when the amplitude and phase of those functions have been determined.

The point of observation is forced down to a general surface patch, whereupon
the fields on the left sides of Eqs. (11.9) and (11.10) are those due to the coupling
of the fields on all other patches, plus the incident fields and a "self-field." The
self-field (or current or charge) is moved to the right side of the equations, leaving
only the known incident field on the left side. When the process is repeated for
each patch on the surface, a system of 2n linear homogeneous equations in 2n
unknowns is generated. If the boundary conditions permit the decoupling of the
equations, the number of unknowns may be halved (n equations in n unknowns).
The coefficients of the resulting matrix involve only the electrical distances (in
wavelengths) between all patches taken by pairs and the orientation of the patch
surface normals. The unknown fields may be found by inverting the resulting ma-
trix and multiplying the inverted matrix by a column matrix representing the in-
cident field at each patch. The surface fields are then summed in integrals like
Eqs. (11.9) and (11.10) to obtain the scattered field, which then may be inserted in



FIG. 11.22 The method of moments divides the body
surface into a collection of discrete patches.

Eq. (11.1) to compute the RCS. Equation (11.2) and the two-dimensional coun-
terparts of Eqs. (11.9) and (11.10) must be used for two-dimensional geometries,
of course.

The method of moments has become a powerful tool in the prediction and
analysis of electromagnetic scattering, with applications in antenna design as well
as RCS prediction. The method has three limitations, however.

First, because computer memory and processing time both increase rapidly
with the electrical size of the object, MOM is economically restricted to objects
not much more than a few wavelengths, or perhaps a few dozen wavelengths, in
size. As such, MOM is not a useful tool for predicting the RCS of, say, a jet
fighter in the beam of a radar operating at 10 GHz. The second limitation is that
MOM yields numbers, not formulas, and is therefore a numerical experimental
tool. Trends may be established only by running a numerical experiment repeat-
edly for small parametric changes in the geometry or configuration of an object or
in the angle of arrival or the frequency of the incident wave. Third, the solutions
for some objects may contain spurious resonances that do not actually exist,
thereby reducing the confidence one may have in applying the method to arbi-
trary structures.

Figure 11.23 traces the broadside RCS of a perfectly conducting cube com-
puted by means of the method of moments. Spurious resonances were sup-
pressed in the computations by forcing the normal surface component of the mag-
netic field to zero. The surface of the cube was divided into 384 patches (64
patches per face), which was about the limit of the central memory of the Cyber
750 computer used in the computations. It required more than 2 h for the Cyber
750 to generate the data plotted in the figure.26

Approximate Methods. Approximate methods for computing scattered
fields are available in both the Rayleigh and the optics regions. Rayleigh region
approximations may be derived by expanding the wave equation (11.5) in a
power series of the wavenumber k.27 The expansion is quasi-static for small
wavenumbers (long wavelengths compared with typical body dimensions), and
higher-order terms become progressively more difficult to obtain. The RCS
pattern of a Rayleigh scatterer is very broad, especially if the object has similar
transverse and longitudinal dimensions. The magnitude of the echo is
proportional to the square of the volume of the object and varies as the fourth
power of the frequency of the incident wave.28 Because the method of moments



is well suited to the solution of Rayleigh re-
gion problems, approximate methods for
predicting the RCS of electrically small ob-
jects are not presented here.

Several approximate methods have been
devised for the optics region, each with its
particular advantages and limitations. The
most mature of the methods are geometric op-
tics and physical optics, with later methods at-
tacking the problem of diffraction from edges
and shadow boundaries. While the general ac-
curacy of the optics region approximations
improves as the scattering obstacle becomes
electrically larger, some of them give reason-
ably accurate results (within 1 or 2 dB) for ob-
jects as small as a wavelength or so.

The theory of geometric optics is based on
the conservation of energy within a slender
fictitious tube called a ray. The direction of
propagation is along the tube, and contours of
equal phase are perpendicular to it. In a
lossless medium, all the energy entering the
tube at one end must come out the other, but
energy losses within the medium may also be
accounted for. An incident wave may be rep-
resented as a collection of a large number of rays, and when a ray strikes a sur-
face, part of the energy is reflected and part is transmitted across the surface, The
amplitude and phase of the reflected and transmitted rays depend on the proper-
ties of the media on either side of the surface. The reflection is perfect if the sur-
face is perfectly conducting, and no energy is transmitted across the boundary.
When energy can pass through the surface, transmitted rays are bent toward the
surface normal in crossing a surface into an electrically denser medium (higher
index of refraction) and away from the surface normal into a less dense medium.
This bending of rays is known as refraction.

Depending on surface curvature and body material, reflected and transmitted
rays may diverge from one another or they may converge toward each other.
This dependence is the basis for the design of lenses and reflectors at radar wave-
lengths as well as optical wavelengths. The variation of the refractive index of the
water molecule with wavelength is responsible for the rainbow, the result of two
refractions near the front of a spherical water droplet and a single internal reflec-
tion from the rear. Secondary and tertiary rainbows are due to double and triple
internal reflections.

The reduction in intensity as the rays diverge (spread away) from the point of
reflection can be calculated from the curvatures of the reflecting surface and the
incident wave at the specular point, that point on the surface where the angle of
reflection equals the angle of incidence. The principal radii of curvature of the
surface are measured in two orthogonal planes at the specular point, as shown in
Fig. 11.24. When the incident wave is planar and the direction of interest is back
toward the source, the geometric optics RCS is simply

(T = Tta\a2 (11.12)

4s/X
FIG. 11.23 Broadside RCS of a per-
fectly conducting cube (s = edge
length). (Copyright 1985, IEEE.26}



FIG. 11.24 The geometric optics RCS of a doubly curved surface de-
pends on the principal radii of curvature at the specular point. The
specular point is that point on the surface where the surface normal
points toward the radar.

where al and a2 are the radii of curvature of the body surface at the specular
point.

This formula becomes exact in the optical limit of vanishing wavelength and is
probably accurate to 10 or 15 percent for radii of curvature as small as 2 or 3
wavelengths. It assumes that the specular point is not close to an edge. When
applied to dielectric objects, the expression should be multiplied by the square of
the voltage reflection coefficient associated with the material properties of the
object. Internal reflections should also be accounted for, and the phase of inter-
nally reflected rays adjusted according to the electrical path lengths traversed
within the body material. The net RCS then should be computed as the coherent
sum of the surface reflection plus all significant internal reflections. Equation
(11.12) fails when one or both surface radii of curvature at the specular point be-
come infinite, yielding infinite RCS, which is obviously wrong. This occurs for
flat and singly curved surfaces.

The theory of physical optics (PO) is a suitable alternative for bodies with flat
and singly curved surface features. The theory is based on two approximations in
the application of Eqs. (11.9) and (11.10), both of which are reasonably effective
approximations in a host of practical cases. The first is the far-fleld approxima-
tion, which assumes that the distance from the scattering obstacle to the point of
observation is large compared with any dimension of the obstacle itself. This al-
lows one to replace the gradient of Green's function with

Vi); = /JkIIi0S (11.13)

i|i0 = e~ikr ' seikR°I^R0 (11.14)

where r is the position vector of integration patch dS and s is a unit vector point-
ing from an origin in or near the object to the far-field observation point, usually



back toward the radar.29 R0 is the distance from the origin of the object to the
far-field observation point.

The second is the tangent plane approximation, in which the tangential field
components n x E and n x H are approximated by their geometric optics val-
ues. That is, a tangent plane is passed through the surface coordinate at the patch
dS, and the total surface fields are taken to be precisely those that would have
existed had the surface at dS been infinite and perfectly flat. Thus the unknown
fields in the integrals of Eqs. (11.9) and (11.10) may be expressed entirely in
terms of the known incident field values. The problem then becomes one of eval-
uating one of the two integrals and substituting the result into Eq. (11.1) to obtain
the RCS.

If the surface is a good conductor, the total tangential electric field is virtually
zero and the total tangential magnetic field is twice the amplitude of the incident
tangential magnetic field:

n x E = 0 (11.15)

J 2n x H, illuminated surfaces
nxH = { (11.16)1 O shaded surfaces

Note that the tangential components of both the electric and the magnetic fields
are set to zero over those parts of the surface shaded from the incident field by
other body surfaces. Other approximations may be devised for nonconducting
surfaces; if the incident wavelength is long enough, for example, the surface of a
soap bubble or the leaf of a tree may be modeled as a thin membrane, on which
neither the electric nor the magnetic fields are zero.

The integral is easy to evaluate for flat metallic plates because the phase is the
only quantity within the integral that varies, and it varies linearly across the sur-
face. The result for a rectangular plate viewed in a principal plane is

. A cos6 sin (*€ sine)
„ = 4*— -^-—2 (1U7)

where A is the physical area of the plate, e is the angle between its surface normal
and the direction to the radar, and € is the length of the plate in the principal plane
containing the surface normal and the radar line of sight. A more general physical
optics formula is available for the bistatic scattering of a polygonal plate with an
arbitrary number of sides.30'31

A rectangular plate has a pair of orthogonal principal planes, and the edge
length € in Eq. (11.17) is that lying in the plane of measurement. If we designate w
as the width of the plate in the opposite plane, the area of the plate is A = €vv. To
evaluate the maximum sidelobe levels of the plate RCS in the principal plane of
measurement, we may replace the numerator of the sin (x)lx term in Eq. (11.17)
by unity. Normalizing with respect to the square of the width of the plane in the
plane orthogonal to the measurement plane, we find the maximum sidelobe levels
to be

V-V (n- i8>w2 TT tan2 e



Note that this result is independent of the radar wavelength.
The frequency independence of the principal-plane sidelobes is illustrated in

Fig. 11.25. For viewing angles away from normal incidence, the plate edges are
the dominant sources of echo, and the sin (x)/x pattern is the result of the indi-
vidual edge contributions changing phase with respect to each other as the aspect
angle changes. Noting from Table 11.1 that the radar echoes of straight edges per-
pendicular to the line of sight are independent of frequency, the result of Eq.
(11.18) is to be expected.

6 (degrees)
FIG. 11.25 The amplitudes of the principal-plane sidelobes of the RCS of a
flat rectangular plate are independent of frequency. (Courtesy of Walter W.
Lund, Jr., The Boeing Company.)

The physical optics formula for the RCS of a circular metallic disk is

A cos 0 J\(kd sin 6) 2
i^ •**. vcjs \j i^ ' ,+ + ifYva = 16ir — • . (11-19)

X kd sin 6

where A is the physical area of the disk, d is its diameter, and J1 (x) is the Bessel
function of the first kind of order 1. Equations (11.17) and (11.19) both reduce to
the value listed in Table 11.1 for normal incidence.

The integral is somewhat more complicated to evaluate when the surface is
singly or doubly curved. An exact evaluation can be performed for a circular cyl-
inder and a spherical cap viewed along the axis of symmetry, but not for a trun-
cated cone or a spherical cap seen along other than the axis of symmetry. Even
so, the exact evaluation for the cylinder includes fictitious contributions from the
shadow boundaries at the sides of the cylinder that do not appear in a stationary
phase approximation.32

The amplitude of the elemental surface patch contributions changes slowly
over the surface of integration while the phase changes much more rapidly. As
such, the net contribution in regions of rapid phase change is essentially zero and
may be ignored. As the specular regions are approached, on the other hand, the
phase variation slows down and then reverses as the specular point is crossed.
This results in a nonzero specular contribution to the integral. The phase varia-
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tion near the shadow boundaries is rapid; hence surface contributions there are
ignored in a stationary phase evaluation, but an exact evaluation includes them
because the shadow boundaries are the limits of integration. Because the actual
surface field distributions do not suddenly drop to zero as the shadow boundary
is crossed, as assumed by the theory, the shadow boundary contributions are
spurious.33'34 Therefore, a stationary phase approximation of the physical optics
integral over closed curved surfaces tends to be more reliable than an exact eval-
uation.

With this in mind, the stationary phase result for a circular cylinder is

0 sin (H sin 6) 2

<r = kat2 . (11.20)
A:€ sin 9

where a is the radius of the cylinder, € is its length, and 6 is the angle off broad-
side incidence. Equation (11.20) includes only the contribution from the curved
side of the cylinder and not its flat ends, which may be included by using the
prescription of Eq. (11.19). Equation (11.20) may be used to estimate the RCS of
a truncated right circular cone if the radius a is replaced by the mean radius of the
cone and € is replaced by the length of the slanted surface.

While the theory of physical optics offers a significant improvement over geo-
metric optics for flat and singly curved surfaces, it suffers from other drawbacks.
Although one obtains the proper result for most of the illuminated surface, the
physical optics integral yields false contributions from the shadow boundaries, as
noted above. Moreover, the theory shows no dependence on the polarization of
the incident wave and yields different results when the receiver and the transmit-
ter are interchanged. These effects contradict observed behavior. Finally, it errs
by wider margins as the direction of observation moves farther away from the
specular direction. As illustrated in Fig. 11.11, the theory is quite accurate at
broadside incidence (the specular case), but the agreement between measurement
and prediction becomes progressively worse as the scattering angle moves away
from that direction. Keller's geometrical theory of diffraction (GTD) offers an
improvement in both the polarization dependence and the predicted values in the
wide-angle regions.35'36

GTD is a ray-tracing method that assigns an amplitude and phase to fields dif-
fracted at smooth shadow boundaries and at surface discontinuities. Because the
latter are much more significant in backscattering computations than the former,
we focus here on edge diffraction. The theory assumes that a ray striking an edge
excites a cone of diffracted rays, as in Fig. 11.26. The half angle of this diffraction
cone is equal to the angle between the incident ray and the edge. Unless the point

FIG. 11.26 The Keller cone of diffracted rays.



of observation lies on the diffraction cone, no value is assigned the diffracted
field. The scattering direction in backscattering problems is the reverse of the di-
rection of incidence, whence the diffraction cone becomes a disk, and the scat-
tering edge element is perpendicular to the line of sight.

The amplitude of the diffracted field is given by the product of a diffraction
coefficient and a divergence factor, and the phase depends on the phase of the
edge excitation and on the distance between the observation point and the dif-
fracting edge element. Two cases are recognized, depending whether the incident
field is polarized parallel or perpendicular to the edge.

The diffracted field is given by the formula

Y Jks JTT/4
Ed= (X+Y) (11.21)

VT/nks sin p

where T is a divergence factor, X and Fare diffraction coefficients, (3 is the angle
between the incident ray and the edge, and s is the distance to the observation
point from the point of diffraction. The difference of the two diffraction coeffi-
cients is used when the incident electric field is parallel to the edge (TM polar-
ization) and the sum when the incident magnetic field is parallel to the edge (TE
polarization).

The divergence factor accounts for the decay in amplitude as the rays spread
away from the edge element and includes the effects of the radius of the edge if it is
curved, as at the end of a truncated cylinder, and the radius of curvature of the in-
cident phase front.37 The divergence factor for a two-dimensional edge (of infinite
length) illuminated by a plane wave is T = l/s. The diffraction coefficients are

sin (TfIn)In

cos (ir/rt) - cos [(<(>,• - $s)/n]

sin (ir/«)/n
Y ~ cos (Wn) - cos [(<|>, + <k)//i] (11.23)

where <(>, and <$>s are the angles of the planes of incidence and scattering, as mea-
sured from one face of the wedge, and n is the exterior wedge angle normalized
with respect to TT; see Fig. 11.27. The three-dimensional result for an edge of fi-
nite length € may be obtained by inserting Eqs. (11.22) and (11.23) in Eq. (11.21),
using Eq. (11.21) for VJV0 in Eq. (11.2), and then inserting Eq. (11.2) in Eq.
(11.3).

Figures 11.28 and 11.29 compare measured and GTD-predicted RCS patterns
of a right circular cone frustum. The theory replicates most of the pattern fea-
tures for both polarizations but fails in three different aspect angle regions. These
aspects are the specular directions of the flat surfaces at either end of the frustum
(O and 180° on the charts) and near the specular flash from the slanted side at 80°.
The failure is due to a singularity in the diffraction coefficient Y along the reflec-
tion boundary, and a similar singularity occurs in the diffraction coefficient X
along the shadow boundary, a situation encountered in forward scattering.

The singularities are overcome in the physical theory of diffraction (PTD) for-
mulated by P. Ia. Ufimtsev.39'40 (Although these publications may be difficult to
find, we cite them here for completeness.) Like Keller, Ufimtsev relied on the
(exact) canonical solution of the two-dimensional wedge problem, but he distin-



FIG. 11.27 Angles of incidence and scattering for wedge geometry.

guished between "uniform" and "nonuniform" induced surface currents. The
uniform currents are the surface currents assumed in the theory of physical op-
tics, and the nonuniform currents are associated with the edge itself (filamentary
currents). The PTD result for two-dimensional problems may be represented as a
linear combination of TM and TE polarizations,

ikp nr/4
E5 = EQf-= (11.24)

V2'TT/:p
ikp itr/4

Hs = H0g^= (11.25)
V2-nkp

where p is the distance to the far-field observation point and / and g are

1(X-Y)-(X1-Y1) 0£f,<a2p
/=(f - Y) - (Xi - F1) - (X2 -Y2) a - ir <h^ P (11.26)

(X L Y) - (X2 - Y2) it <(>,• s a

1(X + Y) - (X1 + Y}) O s f,. < a 2 p
g =(i + Y) - (X1 + Y1) - (X2 +Y2) a - TT <(>,. s p (11.27)

(X V Y) - (X2 + Y2) -rr <fr, < a

The subscripted coefficients are known as the physical optics diffraction coeffi-
cients,

X1 = - tan [(<t>,-4>,-)/2] (11.28)
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FIG. 11.28 RCS of a cone frustum, vertical polarization. (Copyright 1966, IEEE.38)

Y1 = - tan [(<|>, + 4>,)/2] (11.29)
X2= tan [(4>,-4>/)/2] (11.30)
F 2 = - tan [a-(<|>, + <h)/2] (11.31)

Because the PO diffraction coefficients depend on whether the upper face, the
lower face, or both faces of the wedge are illuminated by the incident wave, the
diffraction coefficients are combined differently in the three recognizable sectors
defined in Eqs. (11.26) and (11.27). And because surface terms have been sup-
pressed explicitly by the subtraction of the PO coefficients, the effects of surface
currents (as distinguished from filamentary edge currents) must be accounted for
independently. Those surface terms may be obtained, for example, by using geo-
metrical optics or, paradoxically, the theory of physical optics after the edge
terms themselves have been computed.

GTD and PTD are both based on the exact solution of the two-dimensional
wedge problem, for which the directions of incidence and scattering are perpen-
dicular to the edge. When extended to the case of oblique incidence, the direction
of observation must lie along a generator of the Keller cone depicted in Fig.
11.26. If the edge is straight and of finite length, as in the three-dimensional
world, Eq. (11.3) provides an approximation of the RCS. If the edge is curved, it
may be regarded as a collection of infinitesimally short segments butted together,
and the scattered fields may be computed via an integration of incremental fields
diffracted by each element of the edge. This is the concept introduced by
Mitzner,41 and the summation of the fields diffracted by the edge elements im-
plies an integral around the edge contour. (Although Mitzner's most significant
results are embedded in a government document of limited distribution, we in-
clude this source in our references because of its significance.)

However, Mitzner sought the fields scattered in arbitrary directions, not just
those along the local Keller cones, and for this purpose he developed his concept
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FIG. 11.29 RCS of a cone frustum, horizontal polarization. (Copyright 1966, IEEE.38)

of the incremental length diffraction coefficient. Extending the example provided
by Ufimtsev, he devised a set of diffraction coefficients for arbitrary directions of
incidence and scattering. Not unexpectedly, those coefficients are more compli-
cated than the ^'s and Fs appearing in Eqs. (11.22) and (11.23), and (11.28)
through (11.31).30'42

Mitzner expressed his result as the diffracted electric-field components paral-
lel and perpendicular to the plane of scattering in terms of the components of the
incident electric field parallel and perpendicular to the plane of incidence. As
such, the diffraction coefficients may be expressed as three separate pairs repre-
senting parallel-parallel, perpendicular-perpendicular, and parallel-perpendicular
(or perpendicular-parallel) combinations. One member of each pair is due to the
total surface current on the diffracting edge (including the assumed filamentary
edge currents), and the other is due to the uniform physical optics currents.
Mitzner subtracted one member of each pair from the other, thereby retaining the
contributions from the filamentary currents alone.

The results have identically the form of Ufimtsev's expressions, in which the
PO coefficients are subtracted from the non-PO coefficients. Thus, Mitzner's ex-
pression for the scattered field contains only the contributions from the filamen-
tary edge currents. In applying his theory to scattering objects, therefore, the
contributions of nonfilamentary induced surface currents must be accounted for
separately, just as in Ufimtsev's physical theory of diffraction. When the direc-
tions of incidence and scattering become perpendicular to an edge, the
perpendicular-parallel terms disappear and Mitzner's diffraction coefficients then
reduce identically to Ufimtsev's.

Undertaking what he called a more rigorous evaluation of the fields induced
on a wedge, Michaeli duplicated Mitzner's result for the total surface currents,

Frustum length = 24.324 X
Minimum diameter = 4.779 X
Maximum diameter =13.363 X

GEOMETRICAL DIFFRACTION THEORY

MEASUREMENT

ZIMUTH ASPECT ANGLE a (degrees)

AXIS OF
SYMMETRY

LINE OF SIGHT
HORIZONTAL
POLARIZATION

RA
DA

R 
CR

OS
S 

SE
CT

IO
N 

(d
Bs

m
)



confirming Mitzner's prior development, but he did not explicitly remove the PO
surface-current contributions.43 Thus, like Keller's X and Y, Michaeli's diffrac-
tion coefficients become singular in the transition regions of the reflection and
shadow directions. Michaeli later investigated the removal of the singularities,
the cleverest of which was the use of a skewed coordinate system along the
wedge surfaces.44'45

While these methods of evaluating the fields scattered by edge elements may
be applicable to smooth unbounded edges, they do not account for the
discontinuities at corners where the edges turn abruptly in other directions. An
attack on the problem has been suggested by Sikta et al.46

When applying these approximate high-frequency methods of estimating the
fields scattered by complex objects, it is necessary to represent the object as a
collection of surfaces having relatively simple mathematical descriptions. The ac-
tual surface profiles may be approximated by segments that have conveniently
simple mathematical descriptions, such as flat plates, truncated spheroids, and
truncated conic sections. The total RCS may be formed by summing the field
contributions of the individual segments using the methods described above or
whatever other tools are available. It is important to sum the field strengths of the
individual contributions, complete with phase relationships, before squaring to
obtain the total RCS as given by Eq. (11.1). This is tantamount to forming the
coherent sum

o- = 12Vv^l2 (11.32)
p

where ap is the RCS of the pth contributor and $p is its relative phase angle, ac-
counting for the two-way propagation of energy from the radar to the scattering
feature and back again. If all phase angles are equally likely, one may form in-
stead the noncoherent sum

a = 20P (n-33)
p

The noncoherent RCS is meaningful only if a change in the aspect angle or a
sweep in the instantaneous radar frequency does indeed result in a uniform dis-
tribution of phase angles. It is the average RCS formed over a time interval long
enough to ensure the equal likelihood of all phase angles.

77.4 RCS MEASUREMENT TECHNIQUES

RCS measurements may be required for any of several reasons, ranging from sci-
entific inquiry to verification of compliance with product specifications. There
are no formal standards governing intrumentation and measurement methods, but
informal standards of good measurement practice have been recognized for de-
cades. Depending on the size of the test object, the frequencies to be used, and
other test requirements, measurements may be made in indoor test facilities or on
outdoor ranges. Because one is seldom interested in the RCS of an object for only
one aspect angle, all static test ranges use turntables or rotators to vary the target
aspect angle. Although the purpose of testing often governs how the measure-




