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12.1 INTRODUCTION

Radar ground return is described by a°, the differential scattering cross section,
or scattering coefficient (scattering cross section per unit area), rather than by the
total scattering cross section a used for discrete targets.! Since the total cross sec-
tion a of a patch of ground varies with the illuminated area and this is determined
by the geometric radar parameters (pulse width, beamwidth, etc.), a° was intro-
duced to obtain a coefficient independent of these parameters.

Use of a differential scattering cross section implies that the return from the
ground is contributed by a large number of scattering elements whose phases are
independent. This is primarily because of differences in distance that, although
small fractions of total distance, are many wavelengths. Superposition of power
is possible for the computation of average returns. If this condition is not appli-
cable to a particular ground target, the differential-scattering-cross-section con-
cept has no meaning for that target. For example, a very-fine-resolution radar
might be able to resolve a part of a car; the smooth surfaces on the car would not
be properly represented by a°. On the other hand, a coarser radar might look at
many cars in a large parking lot, and a valid a° for the parking lot could be de-
termined.

If a region illuminated at one time by a radar contains n scattering elements
and the above criterion is satisfied so that power may be added, the radar equa-
tion becomes
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Here A A,- is an element of surface area, and Pti, Gn-, and An- are values of Pn Gn
and Ar appropriate for an element at the location of A A/. The factor in parenthe-
ses in the numerator of the right-hand expression is the incremental scattering
cross section for element „ but this concept is meaningful only in an average.
Thus the average power returned is given by



= ̂  P,,.G,,. An-(T
0A A,

Pr ~ 1 (*a*tf

Here a° has been used to denote the average value of (j,/A A1-. In this formulation,
we may pass in the limit from the finite sum to the integral given by
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The bar over Pr implies the average value. This integral is not really correct, for
there is a minimum size for real, independent scattering centers. Nevertheless,
the concept is widely used and is applicable as long as the illuminated area is
large enough to contain many such centers.

Figure 12.1 illustrates the geometry associated with Eq. (12.1). Note that, for
a rectangular pulse, Pt is either zero or the peak transmitter power but, for other
pulse shapes, the variation with r(or R) is significant. Actual pulses are often
approximated by rectangular pulses with widths equal to their half-power widths.
Real pulses cannot be rectangular after passing through real receiver bandwidths.
The transmitting-antenna gain and receiving-antenna aperture are functions of the
elevation and azimuth angles:

G, = G,(e,4>) Ar = A,(e,4>) (12.2«)
The differential scattering cross section itself is a function of both look angle and
ground location:

cr° = a°(0,(t),location) (12.26)

The integral of Eq. (12.1) must be inverted when cr° is measured. With narrow
beams and short pulses the inversion is relatively easy, but with the wider beams
and longer pulses used in many measurements the values obtained are sometimes
poorly defined.

Some authors2 use a scattering cross section per unit projected area rather
than per unit ground area. Figure 12.2 illustrates by a side view the difference
between ground area and projected area. The ground area is proportional to Ap,
and the projected area is smaller. Thus,

a°A = -yd(projected area) = y cos QdA
\l2,.j)

or a° = y cos 0

Since both y and a° are called scattering coefficients, readers of the literature
must be especially careful to determine which is being used by a particular au-
thor.

Radar astronomers use a different a:3

total return power from entire surface
power returned from perfect isotropic sphere of same radius



The resulting value for a is usually much smaller than cr° for the planet at vertical
incidence and is larger than the values of cr° near grazing incidence (return from
the limb of the planet).

Relative Importance of Theory and Empiricism. The theory of radar ground
return has been the subject of many publications. The various theories, insofar
as they can be confirmed by experiment, provide bases for judging the effects
of variations in the dielectric properties of the ground, of the roughness of the
ground and nature of vegetative or snow cover, of radar wavelength, and of
angle of incidence. Viewed as aids to insight, radar ground-return theories can
be extremely useful.

The validity of any ground-return theory must depend on the mathematical
model used to describe the surface, as well as on the approximations required to
obtain answers. Even the simplest ground surface, the sea, is extremely difficult
to describe accurately; it is homogeneous to beyond the skin depth, contains rel-
atively modest slopes, and (except for spray) has no part above another part of
the surface. At grazing angles, shadowing of one wave by another might occur.
Land surfaces are much more difficult to describe: Imagine an adequate mathe-
matical description of the shape of a forest (when every leaf and pine needle must
be described). Furthermore, land surfaces are seldom homogeneous either hori-
zontally or with depth.

Since a true mathematical description of the ground surface appears out of the
question, empirical measurements are necessary to describe the radar return
from natural surfaces. The role of theory is to aid in interpreting these measure-
ments and to suggest how they may be extrapolated.

Available Scattering Information. Prior to 1972 the lack of coordinated
research programs over the necessary long period resulted in only one really
usable set of measurements, that at Ohio State University.2'4 Since that
time extensive measurements have been made from trucks and helicopters
by the University of Kansas,6'7 a group in the Netherlands,8 and several
groups in France.9 These measurements concentrated especially on vege-

FIG. 12.1 Geometry of the radar equation. FIG. 12.2 Ground area and projected area.
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tation, with the Kansas measurements also including some work on snow
and extensive work on sea ice. Most of these measurements were in the 10
to 80° range of incidence angles. Measurements near vertical are scarcer,
while well-controlled experiments near grazing are very scarce indeed.

Airborne measurements are necessary to make larger scattering areas acces-
sible. Although airborne programs for special purposes have been legion, curves
of scattering coefficient versus angle for a known homogeneous area are scarce.
The work at the MIT Radiation Laboratory10 was early work by Philco
Corporation.11 Goodyear Aerospace Corporation,12 General Precision
Laboratory,13 and the U.S. Naval Research Laboratory (NRL)14"16 programs
were important early. More recently, the Canada Centre for Remote Sensing
(CCRS) has made numerous airborne scatterometer measurements,17 especially
over sea ice. The Environmental Research Institute of Michigan (ERIM),18

CCRS, the European Space Agency (ESA),19 and the Jet Propulsion Laboratory
(JPL)20 used imaging synthetic aperture radars (SARs) for some scattering mea-
surements, but most were not well calibrated.

Results of most of these measurements are summarized in Ulaby, Moore, and
Fung.21 More complete summaries of the earlier work and near-grazing studies
are in Long.22 Many applications summaries are also in the "Manual of Remote
Sensing."23 Readers requiring more detailed information should consult these
books.

72.2 PARAMETERSAFFECTINGGROUND
RETURN

Radar return depends upon a combination of system parameters and ground
parameters:

Radar system parameters [Eqs. (12.1) and (12.2a and b)]
Wavelength
Power
Illuminated area
Direction of illumination (both azimuth and elevation)
Polarization

Ground parameters
Complex permittivity (conductivity and permittivity)
Roughness of surface
Inhomogeneity of subsurface or cover to depth where attenuation reduces
wave to negligible amplitude

Different wavelengths are sensitive to different elements on the surface. One
of the earliest known and most striking directional effects is the cardinal-point
effect in return from cities: Radars looking in directions aligned with primary
street grids observe stronger regular returns than radars at other angles. When
radars are looking at a normal-incidence angle, horizontally polarized waves are
reflected better by horizontal wires, rails, etc., than are vertically polarized
waves.

If the geometry of two radar targets were the same, the returns would be



stronger from the target with higher complex permittivity because larger currents
(displacement or conduction) would be induced in it. Because identical geome-
tries with differing permittivities do not occur in nature, this distinction is not
easy to measure. Effective permittivity for ground targets is very strongly influ-
enced by moisture content, since the relative permittivity of liquid water is from
about 60 at X band to about 80 at S band and longer wavelengths whereas most
dry solids have permittivities less than 8. Attenuation is also strongly influenced
by moisture, since wet materials usually have higher conductivity than the same
materials dry. Figures 12.3 and 12.4 show the effect of moisture content on prop-
erties of plants and of soil. The high permittivity of plants with much moisture
means that radar return from crops varies as the plants mature, even when
growth is neglected.

VOLUMETRIC MOISTURE mv

FIG. 12.3 Measured moisture dependence of the dielectric con-
stant of corn leaves at 1.5, 5.0, and 8.0 GHz. S is the salinity of
water content in parts per thousand, ev = €v - Je1," is the complex
dielectric constant in Fm"1, and mv is the volumetric moisture
content in kg-m~3. (After Ulaby, Moore, and Fung.21)

The roughness of surfaces (especially natural ones) is difficult to describe
mathematically but easy to understand qualitatively. Thus it is easy to see that a
freshly plowed field is rougher than the same field after rain and wind have been
at work on it. A forest is inherently rougher than either a field or a city. The dif-
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MOISTURE CONTENT (%)
FIG. 12.4 Apparent relative dielectric constant versus
moisture content (Richfield silt loam). (After Lundien.24)

ference between the roughness of a city with flat walls interspersed with win-
dowsills, with curbs, cars, and sidewalks, and the roughness of natural areas is
harder to see.

Surfaces that are relatively smooth tend to reflect radio waves in accordance
with the Fresnel-reflection direction,* and so they give strong backscatter only
when the look angle is nearly normal to the surfaces. Rough surfaces, on the
other hand, tend to reradiate nearly uniformly in all directions, and so they give
relatively strong radar returns in any direction.

The problem of radar scatter is complicated because waves penetrate signifi-
cant distances into many surfaces and vegetation canopies, and internal reflection
and scatter contribute to the return. Measurements of attenuation for field
crops25'26 and grasses27 show that most of the return is from the upper layers,
with some contribution by the soil and lower layers if the vegetation is not very
dense. Most of the signal returned from trees is usually from the upper and mid-
dle branches when the trees are in leaf,28"32 although in winter the surface is a
major contributor to the signal.

12.3 THEORETICALMODELSANDTHEIR
LIMITATIONS

Descriptions of a Surface. Many theoretical models for radar return from
the ground assume a rough boundary surface between air and an infinite
homogeneous half space. Some include either vertical or horizontal homo-
geneities in the ground properties and in vegetative or snow covers.

*Angle of reflection equals angle of incidence.
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Surface descriptions suitable for use in mathematical models are necessarily
greatly idealized. Few natural grounds are truly homogeneous in composition
over very wide areas. Descriptions of their detailed shape must be simplified if
they are to be handled analytically, although computers permit the use of true
descriptions. Very few surfaces have ever been measured to the precision appro-
priate for centimeter-wavelength radars; even for these there is no assurance that
scattering boundaries do not exist within a skin depth beneath the surface. Sur-
faces containing vegetation and conglomerate rocks almost completely defy de-
scription.

Statistical descriptions of surfaces are used for most theories, since a the-
ory should be representative of some kind of surface class, rather than of a
particular surface, and since exact description is so difficult. The statistical
descriptions themselves must be oversimplified, however. Many theories as-
sume isotropic statistics, certainly not appropriate for plowed fields or
gridded cities. Most theories assume some kind of model involving only two
or three parameters (standard deviation, mean slope, correlation distance,
etc.), whereas natural (or human-made) surfaces seldom are so simply de-
scribed. The theories for vegetation and other volume scatterers have more
parameters.

Simplified Models. Early radar theories for ground return assumed, as in
optics, that many targets could be described by a Lambert-law variation of
intensity; that is, the differential scattering coefficient varies as cos2 6, with 9
the angle of incidence. This "perfectly rough" assumption was soon found
wanting, although it is a fair approximation for the return from many vegetated
surfaces over the midrange of angles of incidence.

Clapp10 described three models involving assemblies of spheres, with dif-
ferent spacings and either with or without a reflecting ground plane. These
models yield variations from a° independent of angle through a° « cos 6 to
cr° <* cos2 6. Since the sphere models are highly artificial, only the resulting
scatter laws need be considered. Most targets give returns that vary more rap-
idly over part of the incidence-angle regime than these models, although for-
ests and similar rough targets of some depth sometimes give such slowly vary-
ing returns.

Since these rough-surface models usually fail to explain the rise in return near
vertical incidence, other simplified models combine Lambert's law and other
rough-surface scattering models with specular reflection at vertical incidence,
and a smooth curve is drawn between the specular value and the rough-surface
prediction.

Specular reflection is defined as reflection from a smooth plane and obeys the
Fresnel reflection laws.33 At normal incidence, the specular-reflection coefficient
is therefore

r = % ~ ^o
R % + T\O

where TJO, TI^ are the intrinsic impedances of air and earth, respectively. The frac-
tion of total incident power specularly reflected from a rough surface is5

e-2(2™h/\)
2



where crh = standard deviation of surface height variations
X = wavelength

Since this proportion is down to 13.5 percent when vh = X/2ir and to 1.8 percent
when vh = X/(2irV2), significant specular reflection is seldom found for the centi-
meter wavelengths usually used for radar. Nevertheless, a simplified model like
this is convenient for some purposes.

Observation of reflected sunlight from rippled water, from roads, and from
other smooth surfaces leads to the postulation of a facet theory.34'35 The only
sunlight reaching the observer from smooth surfaces such as water is that
from facets for which angle of incidence equals angle of reflection. Thus the
observed light may be described by methods of geometric optics.

When geometric optics is used to describe radar scatter, the surface of the
ground is represented by small flat-plane segments. Radar return is assumed
to occur only for facets oriented normal to the radar (normal orientation is
required for backscatter so that the reflected wave returns to the source).
Thus, if the slope distribution of such facets is known, the fraction normal to
a given diverging beam can be established, and from this the return can be
obtained. Geometric optics assumes zero wavelength, and so the results of
such a theory are wavelength-independent, clearly not in accord with obser-
vation.

The facet model for radar return is extremely useful for qualitative discus-
sions, and so modification to make it fit better with observation is appropriate.
Two kinds of modification may be used, separately or jointly: considering the
actual reradiation pattern of finite-size facets at finite wavelengths36 and con-
sidering the effect of wavelength on establishing the effective number of
facets.37 Thus the scatter from a facet may actually occur in directions other
than that requiring that angle of incidence equal angle of reflection. Figure
12.5 illustrates this. For large facets (compared with wavelength) most of the
return occurs almost at normal incidence, whereas for small facets the orien-
tation may be off normal by a considerable amount without great reduction in
scatter. As the wavelength is increased, the category of a given facet changes
from large to small', eventually the facet is smaller than a wavelength, and its
reradiation pattern shape remains almost isotropic from that point. Many fac-
ets that would be separate at, say, a 1-cm wavelength are combined at a 1-m
wavelength; the result may be a transition from rough- to smooth-surface be-
havior. Figure 12.6« shows a number of facets of different sizes contributing
to a radar return.

FIG. 12.5 Normal-incidence reradiation patterns of facets.
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FIG. 12.6« Facet model of a radar return.

Physical Optics Models. Theories based on applications of the Kirchhoff-
Huygens principle have been thoroughly developed.21'36'38^0 The Kirchhoff
approximation is that the current flowing at each point in a locally curved (or
rough) surface is the same as would flow in the same surface if it were flat and
oriented tangent to the actual surface. This assumption permits construction of
scattered fields by assuming that the current over a rough plane surface has the
same magnitude as if the surface were smooth, but with phase perturbations set
by the differing distances of individual points from the mean plane. For
surfaces assumed to be azimuthally isotropic, the usual approach yields
integrals of the form

_J_ [e-(2k*h cos 6)2[1 - P(C)]J (2^ cos e)W£

cos3 6 J

where p(0 = spatial autocorrelation function of surface heights
0 = angle with vertical

(T1 = standard deviation of surface heights
k = 2WX

J0 = first-order, first-kind Bessel function
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The autocorrelation function of height with distance is seldom known for ter-
rain, although it can be determined on a large scale by analysis of contour
maps,41 and it has been found for some areas by careful contouring at close in-
tervals and subsequent analysis. Because of lack of knowledge of actual
autocorrelations, most theory has been developed with artificial functions that
are chosen more for their integrability than for their fit with nature; selection
among them has been on the basis of which ones yield the best fit between the-
oretical and experimental scatter curves.

The correlation function first used42 was gaussian:

p(6) = e-?lj} (12.5)

where L is the correlation length. Not only is this a function that makes the in-
tegral analytically tractable, but it also gives exactly the same results as geomet-
ric optics.43 Since it fails, like geometric optics, to explain frequency variation, it
cannot be a truly representative correlation function, although it gives a scatter-
ing curve that fits several experimental curves near the vertical. The next most
frequently used function is the exponential:

p(Q = e~^IL (12.6)

This has some basis in contour-map analysis;41 the results fit both earth and lunar
radar return over a wider range of angles than the gaussian41'44 (but sometimes
not as well near vertical). Furthermore, it has the merit that it exhibits frequency
dependence. Resulting expressions for power (scattering coefficient) variations
appear in Table 12.1.

TABLE 12.1 Scattering Coefficient Variation

Small-Perturbation and Two-Scale Models. Recognition that existing models
were inadequate for describing ocean scatter led to recognition that resonance
of the signal with small structures on the surface has a powerful influence on
the strength of the signal received.45'46 Thus a small-perturbation method
originally proposed by Rice47 became the most popular way to describe ocean
scatter. Its application to land scatter was not far behind.

The term Bragg scatter is often used to describe the mechanism for the
small-perturbation model. The idea comes from the concept illustrated in Fig.
12.66.

A single sinusoidal component of a complex surface is shown with an incom-
ing radar wave at angle of incidence 6. The radar wavelength is X, and the
surface-component wavelength is A. When the signal travels an extra distance

Correlation coefficient

e-*L*

e~^IL

Power expression

K
 e-(L

2/2ah
2) tan2 0

sin 0

m ( 1 + A in 'e \ -»
cos2 6 sin e \ cos4 6/

Reference

42

33



FIG. I2.6b In-phase addition for Bragg scattering; A/? = n\/2.

\ = 2hR between the source and two successive wave crests, the phase differ-
ence between the echoes from successive crests is 360°; so the echo signals all
add in phase. If this condition is satisfied for a particular A and 6, it fails to be
satisfied for others. Thus, this is a resonant selection for a given 0 of a particular
component of the surface A. The strength of the received signal is proportional to
the height of this component and to the number of crests illuminated by the radar.
If the surface has an underlying curvature, the number of illuminated crests sat-
isfying the resonance criterion may be limited by the length of the essentially flat
region; otherwise it is limited by the radar resolution.

The theoretical expression for the scattering coefficient is48

o-^o = sk^2 CQS4 eia^|2W(2£ Sin 05o) (12.7)

where p,q = polarization indices (H or V)
k = 2ir/\ (the radar wavenumber)

GLHH = R1 (Fresnel reflection coefficient for horizontal polarization)
sin2 6 - €r (1 + sin 2 9)

OLVV = (er-l) ——
[er cos 6 + (er - sin 2 0)1/2]2

where er is the relative permittivity e' - ye" and OLVH = aHV = O.
W(2 A: sin 6, O) is the normalized roughness spectrum (the Fourier transform of

the surface autocorrelation function). It may be written as W(K9 O), where K is
the wavenumber for the surface. In terms of the wavelength on the surface A,

K = 2>n/A

Thus the component of the surface that satisfies the Bragg resonance condition is

A = X/2 sin 9 (12.8)

The meaning of this is that the most important contributor to a surface return is
the component of surface roughness with wavelength A. Even though other com-
ponents may be much larger, the Bragg resonance makes this component more
important. On the ocean this means that tiny ripples are more important than
waves that are meters high; the same applies for land-surface scatter.

As originally developed, this theory was for perturbations to horizontal flat
surfaces, but it was soon modified to handle surfaces with large-scale roughness.
The large-scale roughness was assumed to cause a tilting of the flat surface to
which the small-perturbation theory could be applied. The principal problem with
this approach is deciding where in the spectrum lies the boundary between the
larger components that do the tilting and smaller components that are Bragg-



resonant. Many papers have been written to describe the evolution of this theory;
for a complete summary, the reader is referred to Fung's development in Ref. 49.

Other Models. The theory for volume scatter has led to many papers and
continues to evolve. For a review of some of the approaches the reader should
consult Fung's summary in Ref. 50 and papers by Kong, Lang, Fung, and
Tsang. These models have been used reasonably successfully to describe
scatter from vegetation,51 snow,52 and sea ice.53 Models of straight vegetation
such as wheat in terms of cylinders have had some success.2 Corner-reflector
effects have been used to describe strong returns from buildings at nonnormal
incidence angles.54 Other specialized models have been used for particular
purposes.

Regardless of the model used and the approach applied to determining the
field strength, theoretical work only guides understanding. Actual earth surfaces
are too complex to be described adequately in any of the models, and the effects
of signals that penetrate the ground and are scattered therein are too little known
to permit its evaluation.

12.4 FADINGOFGROUNDECHOES

The amplitude of ground echoes received by radars on moving vehicles fluctuates
widely because of variations in phase shift for return from different parts of the
illuminated area. In fact, even fixed radars frequently observe fluctuations in
ground echoes because of motions of vegetation, automobiles, etc.

Regardless of the model used to describe a ground surface, signals are, in fact,
returned from different positions not on a plane. As a radar moves past a patch of
ground while illuminating it, the look angle changes, and this changes the relative
distances to different parts of the surface; the result is that relative phase shift is
changed. This is the same kind of relative-phase-shift change with direction that
is present for an antenna array and results in the antenna pattern. For ground
echo the distance is doubled; so the pattern of an echoing patch of length L has
lobes of width X/2L. This compares with \IL for an antenna of the same cross-
range length. Because the excitation of the elements of the scattering array is ran-
dom, the scattering pattern in space also is random.

This fading phenomenon is usually described in terms of the doppler shift of
the signal. Since different parts of the target are at slightly different angles, the
signals from them experience slightly different doppler shifts. The doppler shift,
of course, is simply the rate of change of phase due to motion. Thus the total rate
of change of phase for a given target is

a) = o>c. + Co,,- = ̂ i = J-Kf - 2*/y (12.9)

where coc = carrier angular frequency
o)^ = doppler angular frequency for /th target
${ = phase for /th target
R1 = range from radar to /th target



The doppler shift can be expressed in terms of the velocity vector v as

dRt R1-
^. = _ 2k—^- = - 2k v - — = - 2kv cos (V5R,-) (12.10)

dt RJ

Hence the total field is given by

E = Y A , exp j cocr - [2k v • -4* - IkR10 (12.11)
i I L o * ' J '

where A1- is the field amplitude of the /th scatterer and RiQ is the range at time
zero.

The only reason the scalar product is different for different scatterers is the
different angle between the velocity vector and the direction to the scatterer. This
results in a different doppler frequency for each scatterer. If we assume the lo-
cations to be random, as most theories do, the received signal is the same as one
coming from a set of oscillators with random phases and unrelated frequencies.
This same model of a group of randomly phased, different-frequency oscillators
is used to describe noise; thus the statistics of the fading signal and the statistics
of random noise are the same.

This means that the envelope of the received signal is a random variable with its
amplitude described by a Rayleigh distribution. Such distributions have been mea-
sured for many ground-target echoes.15 Although the actual distributions vary
widely, no better description can be given for relatively homogeneous targets.

When a target is dominated by one large echo (such as a metal roof oriented to
give a strong return), the distribution is better described by that for a sine wave in
noise. If the large echo is considerably stronger than the mean of the remaining
contributors to the return, this approaches a normal distribution about the value
for the large echo. In practice, the distribution from large targets may be more
complicated than either of the simple models described.

For reference, the two distributions are given:55

p(v)dv = — e~v2/2^dv (Rayleigh)

*°
p(v)dv = -^- e~(v2 + "2)/2*%( — |dv (sine wave + noise)

v|;o1/2 Wo/

where v = envelope voltage
v|>0 = mean square voltage
a = sine-wave peak voltage

IQ(X) = Bessel function, first kind, zero order, imaginary argument

Fading-Rate Computations. Doppler frequency calculation is the easiest
way to find fading rates. To compute the signal amplitude returned with a
particular range of doppler shifts, all signals having such shifts must be
summed. This requires knowledge of the contours of constant doppler shift
(isodops) on the scattering surface. These contours must be established for
each particular geometric arrangement. A simple example is presented here:
horizontal motion over a plane earth. This is typical of an aircraft in ordinary
cruising flight.



Consider travel in the y direction, with z vertical, and the altitude (fixed)
z = h. Then

v = lvv
R - I ^ c - H lyy - lzh

where (lx,ly,lz) are unit vectors. Hence

R vy
R Vx2 + y2 + h2

where vr is the relative speed. Curves of constant relative speed are also curves
of constant doppler shift. The equation of such a curve is

v2 - v 2

x2 - y2 + h2 = O
Vr

This is a hyperbola. The limiting curve for zero relative speed is a straight line
perpendicular to the velocity vector. Figure 12.7 shows such a set of constant-
doppler-shift contours.

The spectrum of fading can be calculated by a slight rearrangement of the ra-
dar equation (12.1). Thus, if Wr(fd) is the power received between frequencies fd

and fd + dfd, the radar equation becomes

U7,fw
 l f PfitAr</>dA dfd r/>,G,A ra

0/ dA\
Wr(fd}dfd = I = I - — (12.12)

(4<7r)2j R4 (47T)2 J R4 \ dfj
Illuminated area

between fd and fd + dfd

This is an integral in which the area element between/^ and fd + dfd is expressed
in terms of coordinates along and normal to the isodops. Such coordinates must
be established for each particular case.

Figure 12.8 shows the geometry for horizontal travel. The coordinate a is along
the isodop, and TI is normal to it. We can express Eq. (12.12) in terms of these
coordinates as

dnl" X2 1 f\Pfl2^d(\
wrfd = ̂ \-^\ \ A \ <12-13>#'WJ ipL R4 J

Note that P19 the transmitted power, is nonzero in the integral only for the time it
illuminates the ground. In pulse radars, only that part of the ground area provid-
ing signals back to the radar at a particular time can be considered to have finite
Pt9 and so the range of frequencies that can be present is limited by the pulse, as
well as by the antennas and the maximum velocity.

Another example is shown in Fig. 12.9. This is the small illuminated area for a
narrow-beam, short-pulse system. Here we can make linear approximations with-



FIG. 12.9 Geometry of doppler-shift calcula-
tions for an airborne search radar.

out too much error. A pulse of length T is transmitted from an antenna of
beamwidth c|>0. For the simple illustration given here, we assume the pulse to be
transmitted directly ahead of the horizontally moving vehicle. We may simplify
the problem by assuming a rectangular illuminated area, R<bQ by cr/(2 sin 6). Fur-
thermore, the curvature of the isodops may be neglected, and so the doppler fre-

FIG. 12.7 Contours of constant doppler fre-
quency shift on a plane earth due to horizon-
tal motion.

FIG. 12.8 Geometry of complex fading calcu-
lations. (From Ulaby, Moore, and Fung.21)
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quency is assumed to be the same for all maximum-range points and the same for
all minimum-range points. With this assumption,

fdma\ ~ T~ sm ^max

f - 2v • a
Jdmin ~ Y" Sln ymin

Thus the total width of the doppler spectrum is

Wd = Y(sin 6max " sin 6min)
A.

For short pulses and angles away from vertical, this is

A/rf « —A0 cos 9
A

In terms of pulse length, it becomes

Afc-Sr^nr 02-")2/iX sin 0

If the angular difference across the illuminated rectangle is small enough so
that cr° is essentially constant, the doppler spectrum is a rectangle from/min to

J max*
In practice, antenna beams are not rectangular. The result is that the doppler

spectrum for a side-looking radar like that of the example is not rectangular but
rather has the shape of the antenna along-track pattern. Thus, if the antenna pat-
tern in the along-track direction is G = G(P), with p the angle off the beam cen-
ter, we can express 3 in terms of the doppler frequency fd as

P=/dX/2v

and the spectrum is

^.^m
2(4Ti)3/?3 L 2vJ

where rx is the horizontal resolution in the range direction. Of course, the half-
power beamwidth may be used as an approximation, resulting in the bandwidth
given by Eq. (12.13).

Effect of Detection. The effect of detecting narrowband noise has been
treated extensively in the literature. Here it is necessary only to show the
postdetection spectrum of the preceding example and to consider the number
of independently fading samples per second. Figure 12.10 shows the spectrum
before and after detection. If square-law detection is assumed, the post-
detection spectrum is the self-convolution of the predetection spectrum. Only
the part that passes the low-pass filters in a detector is shown in the figure.
The rectangular RF spectrum has become a triangular video spectrum.



FIG. 12.10 Spectrum of fading from a homogeneous small patch
(a) before and (b) after detection.

This spectrum describes the fading of the detector output for a CW radar. For
a pulse radar, the spectrum is sampled by the PRF (pulse repetition frequency). If
the PRF is high enough so that the entire spectrum can be reproduced (the PRF
is higher than the Nyquist frequency, 2A/^), the diagram indicated is that of the
spectrum of the samples of a received pulse at a given range. Figure 12.11 shows
a series of actual pulses, followed by a series of samples at range R1. The spec-
trum of Fig. 12.10 is the spectrum of the envelope of samples at R1 (after low-
pass filtering). The spectrum of fading at a different range (or vertical angle) is
different, in accord with Eq. (12.13).

For many purposes, the number of independent samples is important, since
these may be treated by using the elementary statistics of uncorrelated samples.
For continuous integration, the effective number of independent samples is55

P]T
N = - (12.15)

2/[l - ^\RsfMdx
o

where T'e is the mean envelope power, T is the integration (averaging) time, and
Rsf(t) is the autocovariance function for the detected voltage. For many practical
purposes, if N is large, it may be approximated by

N^BT (12.16)

where B is the effective IF bandwidth. For the effect of short integration time,
see Ref. 56.

Fading samples can, of course, also be independent because motion of the ve-
hicle causes the beam to illuminate a different patch of grouncj. Thus, in a par-
ticular case, the independent-sample rate may be determined either by the motion
of the illuminated patch over the ground or by the doppler effect, or by some
combination of the two.

The number of independent samples determines the way in which the Rayleigh
or other distributions may be applied. Thus, if 100 pulses give only 10 independent
samples, the variance of the mean obtained by integrating these pulses is much
greater than would be true if all 100 pulses were independent.

Doppler-based systems, such as doppler navigators and synthetic aperture ra-
dar systems, depend on the predetection spectrum for their operation, since they
are coherent and do not use ordinary detection.

(a) (b)



Moving-Target Surfaces. Sometimes
clutter has internal motion. This can occur
when fixed radars are used to observe
movement of the sea and the land. On land,
clutter motion is usually due to moving
vegetation, although moving animals and
machines create similar effects. The radar
return from an assembly of scatterers like
those of Fig. 12.8 can change because of
motion of the individual scatterers just as it
changes because of motion of the radar.
Thus, if each scatterer is a tree, the waving
of the trees as the wind blows causes
relative phase shifts between the separate
scatterers; the result is fading. For a fixed
radar, this may be the only fading observed,
except for very slow fading due to changes
in refraction. For a moving radar, this
motion of the target changes the relative
velocities between target element and radar,
so that the spectrum is different from that
for a fixed surface. The width of the
spectrum due to vehicle motion determines
the ability of the radar to detect this target
motion.

12.5 MEASUREMENT
TECHNIQUES FOR
GROUND RETURN

Special-purpose instrumentation radars and
modified standard radars may be used to
determine the ground return. Since the
ground return is almost invariably due to
scattering, these systems are termed
scatterometers. Such systems may use CW
signals with or without doppler processing,
but they may also use both pulse and FM
techniques. Scatterometers capable of mea-
suring response over a wide range of fre-
quencies are called spectrometers.57 Vari-
ous antenna patterns from pencil beams to
fan beams may be used.

CW and FM-CW Systems. The sim-
plest scatterometer uses a stationary CW
radar. Such systems are not very flexible,
but they are discussed here in some detail
to illustrate calibration techniques that also
apply to the more complex systems.

SAMPLES AT R1

FIG. 12.11 Fading for successive pulses
of a radar with ground target.
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(a) (b)
FIG. 12.12 CW-scatterometer-system block diagram, (a) Separate transmitter and receiver
calibration, (b} Calibration of the ratio of received to transmitted power.

The CW scatterometer is shown in block form in Fig. 12.12. To evaluate cr° the
ratio of transmitted to received power is required. The system in Fig. 12. YIa mea-
sures transmitter power and receiver sensitivity separately. The transmitter feeds
an antenna through a directional coupler so that a portion of the energy may be
fed to a power meter. The receiver operates from a separate antenna (electrically
isolated). The output of the receiver is detected, averaged, and displayed on a
meter, oscilloscope, or other display or recorder. Its sensitivity must be checked
by use of a calibration source. The calibrated signal may be fed through the re-
ceiver at a time when the transmitter is off. Figure 12.12/? shows a similar ar-
rangement in which the signal from the transmitter is attenuated a known amount
and used to check the receiver. By comparing the output from the attenuated
transmitter signal with that received from the ground, the scattering cross section
may be determined without actually knowing the transmitted power and the re-
ceiver gain.

The calibrations shown in Fig. 12.12 are incomplete without knowledge of the
antenna patterns and absolute gains. Since accurate gain measurements are dif-
ficult, absolute calibrations may be made by comparing received signals (with
proper relative calibration) from the target being measured and from a standard
target. Standard targets may be metal spheres, Luneburg-lens reflectors, metal
plates, corner reflectors, or active radar calibrators (ARCs—actually
repeaters).58 Of the passive calibrators, the Luneburg-lens reflector is best, since
it has a large cross section for its volume and has a very wide pattern so that
alignment is not critical. Luneburg-lens reflectors are used for making strong ra-
dar targets of small vessels, and they may be obtained from companies that sup-
ply that market. For discussion of the relative merits of different passive calibra-
tion targets, see Ulaby, Moore, and Fung.59

The ideal receiver would respond linearly to its input, so that a single calibra-
tion at one input level would suffice for all levels. The usual receiver, however,
has some nonlinearities due to detector properties and to saturation of its ampli-
fiers by large signals. Figure 12.13 shows a typical input-output curve for a re-
ceiver. Two equal increments in input signal (A'), as shown, produce different
increments in output because of the nonlinearity of this curve. For this reason,
receiver calibration must be performed over a range of input levels, and the
nonlinearities must be compensated for in the data processing.

CW scatterometers depend on antenna beams to discriminate different angles
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of incidence and different targets. Usually
assumptions are made that the antenna
pattern has constant gain within the actual
3 dB points and zero gain outside, but this
clearly is not an accurate description. If
large targets appear in the locations illu-
minated by the side of the main lobe or
the minor lobes, their signals may contrib-
ute so much to the return that it is signif-
icantly changed. Since this changed signal
is charged to the direction of the major
lobe by the data reduction process, the re-
sulting value for a° is in error. Responses
at vertical incidence frequently cause
trouble, for vertical-incidence signals are
usually fairly strong. Thus the antenna
pattern must be accurately known and
taken into account in the data analysis. A

pattern with strong minor lobes may be simply inadmissible.
The scattering coefficient is determined by applying

_ Pt\
2 p G2^dA

Pr = (4^J ~R*~
Illuminated

area

The integration is over whatever area is illuminated significantly, including the
regions hit by the minor lobes. The usual assumption is that a° is constant over
the illuminated area, so that

Pt\
2v° rG

2dA
Pr = -^ ^~T (12'17>

(4ir)3 J R4

Illuminated
area

This assumption would be true only if the antenna confined the radiated energy to
a very small spread of angles and to a fairly homogeneous region. The resulting
expression is

„,—^^_
Pt\

2 J (Gt
2/R4)dA

Illuminated
area

Note that only the ratio of transmitted to received power is required, and so the
technique of Fig. Yl.Ylb is justified. Sometimes R, Gn or both are assumed con-
stant over the illuminated area, but such an approximation to Eq. (12.18) should
be attempted only after checking its validity for a particular problem.

If the result of applying the technique of Eq. (12.18) to a set of measurements
indicates that CT° probably did vary across the significantly illuminated area, this
variation may be used as a first approximation to determine a function /(9) de-
scribing the 6 variation of a°, and a next-order approximation then becomes

FIG. 12.13 Typical receiver input-output
curve. Illustrated is the effect of non-
linearity.
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O (^Pr
CT° = (12.19)

P1^
2 J [/WG,2/fl4] dA

Illuminated
area

Proper scattering measurements demand an accurate and complete measure-
ment of antenna gain Gr This can be a very time-consuming and expensive pro-
cess, particularly when the antenna is mounted on an aircraft or other metallic
object. Nevertheless, complete patterns are a must for good scatter measure-
ments.

Range-Measuring Systems. Radar's ability to separate returns from different
ranges can be used advantageously along with directive antenna beams to
simplify the scattering measurements. Most ranging scatterometers use either
pulse modulation or FM, although more exotic modulations could also be used.
The discussion here treats pulse systems, but since all other range-measuring
systems can be reduced to equivalent pulse systems most results are general.

Figure 12.14 shows the way in which pulse measurement of range is used. Fig-
ure 12.14« shows a circular pencil beam. At angles near grazing, the illuminated
patch set by the circular antenna pattern becomes rather long (the patch is an
ellipse), and use of the pulse length to confine illumination to a part of the patch
is helpful. Many systems that use beamwidth to set the measured area near ver-
tical use range resolution for angles beyond, say, 60°.

Figure 12.14Z? shows an antenna pattern that takes better advantage of the pos-
sibilities of range measurement. A fan beam is used to illuminate a narrow strip
along the ground, and the range resolution permits separating the returns from
different angles by the time they return. This technique is especially effective at
angles away from the vertical, for the resolution near the vertical is much poorer
than near grazing. The simple approach assumes a constant gain across the beam
and zero elsewhere:

G, = O ct>fl<2/o/2 or ^>/o/2

G1 = G0 - 4 V 2 < f a < / o / 2

FIG. 12.14 Range resolution applied to scatterometry. (a) Improving one dimension of a
circular-beam illumination pattern, (b) Use with a fan beam.

CIRCULAR BEAM
(a) FAN BEAM

(b)



where <f>0 = beamwidth
<j)0 = transverse angle with respect to antenna axis

With the further assumption that a° is essentially constant and that the difference
in range across a resolution element is negligible, the expression for a° becomes

0 _ Pr(4iT)3/?3 sin 6
pt X2G0(|)o

 rR

where rR is the short-range resolution.
Janza has reported details of calibration problems with a range-measuring

pulsed radar scatterometer.60'61

CW-Doppler Scatterometers. A convenient way to measure the scattering
coefficient at many angles simultaneously is with a CW system in which the
relative velocities corresponding to different angles are separated by separating
their doppler frequencies. The use of a fan beam with such a system permits
the simultaneous measurement of scattering coefficients at points ahead of and
behind the aircraft carrying the radar. Figure 12.15 shows this. The pattern of
the antenna illumination on the ground is shown intersected by two isodops
(lines of constant doppler frequency), with the width of the spectrum between
them shown on the diagram. The distance between them can be seen to be

Ap = /?(sin O2 - sin Gj)
2v

and bfd = —(sin B2 - sin B1)
A.

Thus the width of the element on the ground is related to the doppler fre-
quency bandwidth by

R\
Ap = —(A/d)

Where this technique is applied to the radar equation and the following are
assumed:

1. a° constant in the illuminated area

FAN BEAM

FIG. 12.15 Resolution in a fan-beam CW-doppler scatterometer.



2. Antenna gain constant over its beamwidth and zero elsewhere
3. Range variation across the small illuminated area negligible

= /V^ r G^dA = /^V0Go2VK)A/,/ (12 21)

" (4TT)3^ /?4 2V/?2

and so

o = Pr 2vR2

07 />, X4G0
2VK)A/, (12-22)

Doppler scatterometers need not use fore-and-aft beams. The Seasat62 and N-
SCATT63 spaceborne doppler scatterometers were designed with beams pointed
(squinted) ahead and behind the normal to the ground track.

Independent Samples Required for Measurement Accuracy. The Rayleigh
distribution describes the fading signal fairly well. If we assume a Rayleigh
distribution of fading, the number of independent samples required for a given
accuracy is shown in Fig. 12.16. The
range defined in this figure is the range
of mean values lying between 5 and 95
percent points on the distribution. This
accuracy range is independent of any
accuracy problems associated with cali-
bration and knowledge of the antenna
pattern.

The precision of the measurement de-
pends upon the number of independent
samples, not on the total number of sam-
ples. The number of independent samples
can be found from Eq. (12.15) or Eq.
(12.16) after suitable analysis. This analy-
sis assumes that only doppler fading con-
tributes to independence but motion from
one cell to another also adds independent samples. Thus, the total number of
such samples is approximately the product of the number calculated from Eq.
(12.13) and the number of ground cells averaged. Figure 12.17 shows some ex-
amples of the effect of the angle of incidence on the number of independent sam-
ples for a horizontally traveling scatterometer with a forward-pointed beam.

Study of the results obtained in this type of analysis indicates that, in regions
where the scattering coefficient does not change rapidly with angle, the widest
possible angular width (obtained by a longer pulse or a wider filter for a CW-
doppler system) results in the maximum number of independent samples for a
given distance traveled along the ground.

Near-Vertical Problem Most published radar return data purporting to include
vertical incidence gives vertical-incidence scattering coefficients that are too small.
This is a consequence of a fundamental problem in measuring near the vertical
with a finite beamwidth or pulse length. Near-vertical radar returns from most
targets drop off rapidly as the angle with the vertical is increased. Thus the

FIG. 12.16 Accuracy of averages for fad-
ing signals.
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ANGLE OF INCIDENCE
FIG. 12.17 Examples of the variation with angle of incidence of
the number of independent samples for a scatterometer.

measuring beamwidth or pulse width usually encompasses signals from regions
having values for cr° many decibels apart. Since the scattering coefficient varies
much more rapidly near the vertical than at angles beyond 10 or 20° from the
vertical, the problem is much more severe at the vertical. Furthermore, the
problem is complicated at the vertical by the fact that the angular scale terminates
there, so that a beam centered at the vertical illuminates weaker targets (a0) on
both sides of its pattern, whereas a beam away from the vertical illuminates
stronger signals on one side and weaker signals on the other.

Figure 12.18 shows what happens for a steeply descending curve of <r° versus
0. The radar return integral from Eq. (12.1) is a convolution integral; the figure
shows the convolution of the beam pattern with the a° curve. Clearly the average
at the vertical is lower than it should be to indicate properly the variation of a°
near the vertical.

Figure 12.19 shows an example64 based on the theoretical scattering coeffi-
cient for the sea derived from the spectra reported by the Stereo Wave Observa-
tion Project.65 The effect of different beamwidths is clearly shown.

With a pulse or other range-measuring system, reported values are always in
error because, as indicated above, it is almost impossible to resolve a narrow
range of angles near the vertical.

Ground and Helicopter Scatterometers and Spectrometers. Many ground
scattering measurements have been made with systems mounted on boom
trucks and helicopters. Most of these are FM-CW systems66'67 that use wide
bandwidth to obtain extra independent samples rather than for fine resolution.
Some use very wide bandwidth to obtain fine range resolution to locate sources
of scattering.68 Most have multiple-polarization capability, and some are
capable of polarimetry because the phase of two received signals with
orthogonal polarization can be measured.
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FIG. 12.18 How finite beamwidth causes a near-vertical error in measur-
ing the scattering coefficient.

The basic elements of an FM-CW scatterometer are shown in Fig. 12.20. The
swept oscillator must produce a linear sweep; this is easy with yttrium-
iron-garnet (YIG)-tuned oscillators but requires linearizing circuits if tuning uses
a varactor. If dual antennas are used (as shown), the overlap of the beams must
be considered.69 Single-antenna systems are sometimes used, with a circulator
isolating transmitter and receiver; their performance is somewhat poorer than
that of dual-antenna systems because of internal reflections and leakage through
the circulator.

Two versions of the control and data-handling part of an FM-CW
scatterometer are shown in Figs. 12.21 and 12.22. Figure 12.21 shows the
common range-tracking scatterometer. This system can be used to measure
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surface scattering coefficients when
the distance between radar and tar-
get is changing, such as with a fixed
radar observing the sea or a radar on
a helicopter. If the scatterometer is
mounted on a boom truck, the range
tracker is not needed; but it is con-
venient because the range changes
as the angle of incidence is changed.
Figure 12.22 shows the kind of sys-
tem that may be used to measure
scattering from within a volume. By
determining the spectrum of the re-
turn, the user can establish the scat-
tering from different ranges. This
system has been used in determining
the sources of scatter in vegeta-
tion25"27 and snow.

Ultrasonic waves in water can be
used to simulate electromagnetic
waves in air.70"72 Because of the dif-
ference in velocity of propagation an
acoustic frequency of 1 MHz corre-
sponds with a wavelength of 1.5 mm.
Such a wavelength is of a convenient
size for many modeling measure-
ments, and, of course, equipment in
the 1-MHz region is in many ways
easier to operate than equipment in
the microwave region; certainly it is
much easier to operate and less ex-
pensive than microwave equipment
operating at a 1.5-mm wavelength.

Acoustic plane waves and electro-

ANGLE OF INCIDENCE (degrees)

FIG. 12.19 Effect of antenna beam width on
the measured scattering coefficient as a func-
tion of angle of incidence.

THEORETICAL
4.22° BEAMWIDTH
8.44° BEAMWIDTH

FIG. 12.20 Basic block diagram of an FM-CW scatterometer RF section.

SWEEP-
RATE
SIGNAL

SWEEP
GENERATOR SWEPT

OSCILLATOR

DIRECTIONAL
COUPLER TRANSMITTING

ANTENNA

SWEEP-RATE
CONTROL

CENTER-FREQUENCY
CONTROL

ISOLATOR

IF (OR VIDEO)
OUTPUT

MATCHING
TRANSFORMER ISOLATOR

RECEIVING
ANTENNA



FIG. 12.21 Basic block diagram of an FM-CW range-tracking scatterometer: control and
data-handling system.

FIG. 12.22 Basic block diagram of an FM-CW range-discriminating scatterometer: control and
data-handling system.
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magnetic plane waves satisfy the same boundary conditions. When the scattering
surfaces are not plane and when angles of incidence are rather oblique, the anal-
ogy between acoustic and electromagnetic waves is less valid.

Scattering Coefficients from Images. Radar images produced by real or
synthetic aperture radars can be used for scattering coefficient measurement.
Unfortunately, most such systems are uncalibrated; so the results are
somewhat dubious, even on a relative basis when images are produced on
different days. Relative calibration has been introduced into some
systems.12'18'20-73"75 Absolute calibration, which also serves as relative
calibration in some cases, can be achieved by using strong reference targets,
with the ARC repeaters especially suitable.76 Another approach that has been
used is to measure scattering from reference areas with a ground-based or
helicopter system that is well calibrated and to compare the images to these
measured values.73'77

Bistatic Measurements. Measurements of ground return when the receiver
and transmitter are separated are comparatively rare. These measurements are
very difficult to make from aircraft because it is necessary that both transmitter
and receiver antennas look at the same ground point at the same time and that the
signal be correlated with known antenna look angles. Furthermore, it is difficult to
know the polarization, and the exact size and shape of the common area
illuminated by the antenna beams are sometimes difficult to determine. For this
reason, few bistatic measurements from aircraft have been reported in the
literature.78

Laboratory bistatic measurements have been made by both the Waterways Ex-
periment Station24 and Ohio State University2'4 groups using electromagnetic waves
and by the University of Kansas71 group using acoustic waves. Bistatic measure-
ments of laser radiation have been made at Bell Telephone Laboratories,79 and C-
band measurements of buildings at the University of Kansas.80

Because of the antenna orientation problems, most electromagnetic bistatic mea-
surements are only for forward scatter; that is, the receiver, transmitter, and target
all lie in the same vertical plane. The acoustic measurements and optical measure-
ments are easier to make over a wide range of angles and have been made with a
fixed incidence angle and scatter directions covering the entire hemisphere.

Bistatic measurements call for additional calibration complications when made
outside the laboratory because an absolute reference for both transmitter power and
receiver sensitivity must be used. In the laboratory, however, it is possible to use
techniques similar to those for monostatic measurements.

72.6 GENERALMODELSFORSCATTERING
COEFFICIENT (CLUTTER MODELS)

Scatter measurements made during the 1970s allowed generation of models for
average backscatter from large areas. In particular, these included measurements
with the Skylab radiometer-scatterometer RADSCAT83 and with truck-mounted
microwave active spectrometers (MAS)81 by the University of Kansas. Two dif-
ferent models were developed based on the same data, one a linear model and
one a more complicated formulation. Here we present only the linear model.



These models are for averages, and the models do not include variations about
the average. However, analysis of Shuttle Imaging Radar-B (SIR-B) data permits
some estimates to be made of the variability to be expected for different sizes of
illuminated footprint.

The general characteristics of radar backscatter over the range of angles of
incidence have been known for decades. Figure 12.23 shows these. For like-
polarized waves, one can break scatter into three angular regimes: near-vertical
(the quasi-specular region), intermediate angles from 15 to about 80° (the plateau
region), and near-grazing (the shadow region). Cross-polarized scatter does not
have separate quasi-specular and plateau regions (the plateau extends to verti-
cal), and too little is known to establish whether a shadow region exists.

ANGLE OF INCIDENCE B (degrees)
FIG. 12.23 General characteristics of scattering coefficient variation
with angle of incidence. (From Ulaby, Moore, and Fung.21)

For nearly every type of terrain, the measured data fits closely to the form

<jO = Aie-
mi (12.23a)

or a°dB = 10 log Af - 4.3434(6/6;) (12.236)

where A1 and 6, differ for the near-vertical and midrange regions. Figure 12.24
shows an example of this variation. No theory gives exactly this result, but
nearly all measurements fit such a model closely, and the model approximates
most theoretical curves well over the relevant regions. This simple result means
that simple clutter models may be developed and used although more complex
models may be necessary for some remote-sensing applications.

The basis for the linear model82 is a combination of the Skylab results over
North America83 and those from Kansas cropland measurements over three com-
plete seasons with the microwave active spectrometer (MAS).84 The 13.9-GHz
Skylab RADSCAT had a ground footprint of from a 10-km circle at vertical to an
ellipse of 20 by 30 km at 50°. The MAS had footprints at 50° ranging from 5.5 by
8.5 m at 1.1 GHz to 1.4 by 2.1 m at 17 GHz, but millions of measurements were
averaged for the model. Because the Skylab data was at only one frequency and
the responses for the two experiments were essentially the same at that
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ANGLE OF INCIDENCE (degrees)
FIG. 12.24 Regression of average of all 1974
and 1975 13.8-GHz cropland data obtained
with a microwave active spectrometer. (From
Moore, Soofi, and Purduski*2)

frequency, the frequency response shown in the model depends entirely on the
MAS measurements.

The summer Skylab observations included deserts, grassland, cropland, and
forests, whereas the Kansas measurements were only of cropland. However,
early and late in the growing season the cropland was essentially bare, similar to
the summer desert except for soil moisture content. During the height of the
growing season the crops were dense enough so that scatter was similar to that
from forests. Thus, the overall model seems representative of summer conditions
averaged over all of North America.

The model takes the form

<T°dB(/,0) = A + BQ + Cf+ DfQ 20° < 0 < 70° (12.24*0

where A, B, C9 and D take on different values for different polarizations and
above and below 6 GHz. The frequency response below 6 GHz is much more
rapid than above 6 GHz. Moreover, at frequencies above 6 GHz the frequency
response is independent of angle, so that D = O. For lower frequencies, the fre-
quency response is angle-dependent.

For angles less than 20°, only two points were available, 0° and 10°; so sepa-
rate frequency regressions were run at each of these angles. The model for these
angles is

POLARIZATION: VV

ANGLE OF INCIDENCE (degrees)

POLARIZATION: HH



<r°dB(/»0) = Me) + Me)/ e = o°, 10° (12.24/?)
The frequency responses below 6 GHz differed for the two years; so the models
have separate values of the constants for 1975 and 1976. The year 1976 was very
dry in Kansas; so the 1975 values are probably more representative, but both are
given here. Values of the constants are in Table 12.2. Figure 12.25 shows the clut-
ter model for the midrange of angles as a function of frequency. The figure is only
for vertical polarization because results are so similar for vertical and horizontal.

Ulaby developed a different, more complex model from the Kansas vegetation
data.85 This model fits curves rather than straight lines to the measured data. For
most purposes the straight-line model is adequate, and it is much easier to use.

A straight-line model for snow-covered grassland similar to that for vegetation
depends on a more limited data set.86'87 The data was for only one season in
Colorado when the snow was only about 50 cm deep. This means that the signal
probably penetrated to the ground surface at frequencies below about 6 GHz.
Nevertheless, the model indicates the kind of results to be expected for this im-
portant situation. Table 12.3 gives the resulting constants to use in Eq. (12.24«).

Snow scatter depends strongly on the free-water content of the upper layer of
snow; so scatter is much lower from the wet daytime snow (where solar melting
has commenced) than for the dry nighttime snow. Hence, different models must
be used for day and night; compare the day and night measurements shown in
Fig. 12.26. The difference between day and night scatter from snow is even more
pronounced at 35 GHz, but the model does not include 35 GHz because no data
exists between 17 and 35 GHz.

Although no specific clutter model has been developed for forest, results from
the Skylab RADSCAT and Seasat scatterometer show that the Amazon rain for-
est scatters almost independently of the angle of incidence even near vertical.88

The mean measured value at 33° was -5.9 ± 0.2 dB at 13.9 GHz. Observations
with SIR-B indicated that this lack of angular variation of cr° also is present at
1.25 GHz, but lack of calibration prohibited learning the level of scatter at this
frequency.

TABLE 12.2 Constants for Linear Scattering Model (Summer)*

* After Moore, Soofi, and Purduski.82

Eq.

12.24«

12.246

Polarization

V
V
V
H
H
H

V and//
V and H
V and//
V and//
V and//
V and H

Angular
range,0

20-60
20-50
20-70
20-60
20-50
20-70

O
O
O
10
10
10

Frequency
range,
GHz

1-6 (1975)
1-6 (1976)

6-17
1-6 (1975)
1-6 (1976)

6-17

1-6 (1975)
1-6 (1976)

6-17
1-6 (1975)
1-6 (1976)

6-17

Constant
A or M,

dB

-14.3
-4.0
-9.5

-15.0
-1.4
-9.1

7.6
6.4
0.9

-9.1
-3.6
-6.5

Angle
slope B or

N, dB

-0.16
-0.35
-0.13
-0.21
-0.36
-0.12

Frequency
slope C,
dB/GHz

1.12
-0.60

0.32
1.24

-1.03
0.25

-1.03
-0.73

0.10
0.51

-0.41
0.07

Slope cor-
rection D,

dB/
(° • GHz)

0.0051
0.036
0.015
0.040



FREQUENCY(GHz)
FIG. 12.25 General land-scattering-clutter model (vertical
polarization). Horizontal polarization is very similar. (From
Moore, Soofi, and Purduski.82)

TABLE 12.3 Regression Results for Ground-Based Measurements of Snow-Covered
Ground*

* After Moore, Soofi, and Purduski.82

NOTE: 6 = 20 to 70°. Values of coefficients in this table also are considered those of the model.

The models described above are based on averages over very large areas. For
this situation the variability from place to place is small, particularly in the
midrange of angles. Figure 12.27 shows the mean and upper and lower decile val-
ues measured by the Skylab RADSCAT over North America. The larger varia-
tion near vertical apparently results from the effect of nearly specular reflection
from water bodies. When the footprint is smaller, more variability occurs. This is
shown in Fig. 12.28 from a study of the variation of scatter observed by SIR-B

Time of
day

Day
Day
Day
Day

Night
Night
Night
Night

Polarization

V
V
H
H
V
V
H
H

Frequency
range,
GHz

1-8
13-17
1-8

13-17
1-8

13-17
1-8

13-17

Constant
A,dB

-10.0
0.02

-11.9
-6.6

-10.0
-10.9
-10.5
-16.9

Angle
slope

B, dB/°

-0.29
-0.37
-0.25
-0.31
-0.33
-0.13
-0.30
-0.024

Frequency
slope

C, dB/
GHz

0.052
-0.50

0.55
0.0011

-0.32
0.70
0.20
1.036

Slope correc-
tion D, dB/
(° • GHz)

0.022
0.021
0.012
0.013
0.033
0.00050
0.027

-0.0069
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FIG. 12.26 Regressions for vertical-polarization clutter model for
snow: (a) day and (b) night. Note the large differences. Horizontal po-
larization is similar. (From Moore, Soofi, and Purduski*2)
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FIG. 12.27 Angular patterns of the mean, upper decile, and lower decile of Skylab
scatterometer observations over North America during the summer season. (From
Moore et al., University of Kansas Remote Sensing Laboratory Technical Report 243-
12, /975.)
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FIG. 12.28 90 percent range of pixel amplitude versus resolution.
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with averages over different-sized footprints. For small footprints the scatter var-
ies over a wide range, and system designers must account for this.

72.7 SCATTERINGCOEFFICIENTDATA

Numerous programs to gather scattering coefficient data existed prior to 1972,
but sizable data collections with accompanying "ground truth" were rare. Since
1972, however, several major programs have changed the situation so that much
information is now available. Indeed, this information is so widespread that an
adequate summary of the literature is impossible. Hence, this section can only
give highlights of the results and major programs. The reader should consult the
three major compendia of such data for more information both on results and on
bibliography21-23'114 (note that information is spread through many chapters).

Some early scattering-coefficient-measurement programs worth mentioning
include those of the Naval Research Laboratory,15-16 Goodyear Aerospace
Corporation,12 Sandia Corporation (near-vertical data),89'90 and particularly
Ohio State University.2'4 Since 1972 the largest program has been at the Uni-
versity of Kansas.6-7'21-53-57'69'91 Extensive programs were also in France (Centre
National d'Etudes Spatiales, Centre National d'Etudes des Telecommunications,
Universite Paul Sabatier),9 the Netherlands,8 Canada Centre for Remote Sensing
(CCRS; especially sea ice),17 and the University of Bern, Switzerland (snow).92

Many of the results from these programs appear in digests of the International
Geoscience and Remote Sensing Symposia (IGARSS; IEEE Geoscience and Re-
mote Sensing Society) and journals such as IEEE Transactions on Geoscience and
Remote Sensing and on Ocean Engineering, International Journal of Remote Sens-
ing, Remote Sensing of Environment, and Photogrammetric Engineering and Re-
mote Sensing.

Although calibrations for some of the older data were doubtful, summary pre-
sentations are not available for newer data. Accordingly, Fig. 12.29 shows an ear-
lier summary based mostly on X-band data. One should be cautious in using this
data, but the figure gives a feel for the overall variations. Figure 12.30 is a similar
presentation for near-vertical data.93 Calibration of the systems was good, but the
antenna effect discussed in Sec. 12.5 makes the values from O to 5° low.

Effects of Roughness, Moisture Content, and Vegetation Cover. Scattering
falls off more rapidly with angle for smooth surfaces than for rough surfaces.
Since the roughness that affects radar must be measured in wavelength units, a
surface smooth at long wavelengths may be rough at shorter ones. This is
illustrated in Fig. 12.31,94 which shows these effects with measurements from
plowed fields. At 1.1 GHz the signal changed 44 dB between O and 30° for the
smoothest field and only 4 dB for the roughest. At 7.25 GHz the smoothest
field was rough enough to reduce the variation to 18 dB.

For most surfaces cross-polarized scatter is lower than like-polarized, often by
about 10 dB. Cross-polarized scatter from smooth surfaces is much less near ver-
tical than elsewhere. Figure 12.3295 shows this effect. Cross-polarized returns
from volume scatterers with elements that are large compared with a wavelength
are stronger than for surfaces, sometimes being only 3 dB down.

Scatter depends on dielectric constant, which depends on moisture
content.Thus scatter from wet soils at angles off vertical is usually much higher




