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2.1 INTRODUCTION

The basic physics governing the prediction of radar maximum detection range,
for a specified target under free-space conditions with detection limited by ther-
mal noise, has been well understood since the earliest days of radar. The term
free space implies (in the present context) that a spherical region of space, cen-
tered at the radar and extending to considerably beyond the target, is empty ex-
cept for the radar and the target. (Considerably as used here can be precisely de-
fined for specific radars, but a general definition would be lengthy and not very
useful.) It also implies that the only radar-frequency electromagnetic waves de-
tectable within this region, other than those emanating from the radar itself, are
from natural thermal and quasi-thermal noise sources, as described in Sec. 2.5.

Although this condition is never fully realized, it is approximated for some ra-
dar situations. Under many non-free-space conditions and with radically non-
thermal forms of background noise, the prediction problem is considerably more
complicated. Complications not considered in early analyses also result from
modification of the signal and noise relationship by the receiving-system circuitry
(signal processing).

In this chapter the free-space equation will be presented, basic signal process-
ing will be discussed, and some of the most important non-free-space environ-
ments will be considered. The effect of some common nonthermal types of noise
will be considered. Although it will not be feasible to consider all the possible
types of radar situations, the methods to be described will indicate the general
nature of the necessary procedures for environments and conditions not specifi-
cally treated here. Some of the specialized types of radar, for which special anal-
yses are required, are described in later chapters of this handbook.

Definitions. The radar range equation contains many parameters of the
radar system and its environment, and some of them have definitions that are
interdependent. As will be discussed in Sec. 2.3, some definitions contain an
element of arbitrariness, and it is common for different authors to employ
different definitions of some of the range-equation factors. Of course, when



generally accepted definitions do exist, they should be observed. But even
more important, although some arbitrariness may be permissible for individual
definitions, once a particular definition has been adopted for one of the range-
equation factors, it will be found that definition of one or more of the other
factors is no longer arbitrary.

As an example, for pulsed radar the definitions of pulse power and pulse
length are highly arbitrary individually, but once a definition for either one of
them has been adopted, the definition of the other is determined by the constraint
that their product must equal the pulse energy. In this chapter, a set of definitions
that are believed to conform to such rules of consistency, as well as to definitions
adopted by standards organizations, will be presented.

Conventions. Because of the wide variability of propagation-path and other
range-equation factors, certain conventions are necessary for predicting range
under standard conditions when specific values of those factors are not known.
A convention is a generally accepted standard assumption, which may never
be encountered exactly in practice but which falls within the range of con-
ditions that will be encountered, preferably somewhere near the middle of the
range. An example is the conventional geophysical assumption, for calculating
certain earth environment effects that depend on the earth's curvature, that the
earth is a perfect sphere of radius 6370 km. The importance of conventions is
that they provide a common basis for comparison of competing radar systems.
To the extent that they are fairly representative of typical conditions, they also
allow prediction of a realistic detection range. Commonly accepted conventions
will be used in this chapter, and where needed conventions do not exist,
appropriate ones will be suggested.

Range Prediction Philosophy. It is apparent from the foregoing discussion
that a range prediction based on conventional assumptions will not necessarily
be confirmed exactly by experimental results. This conclusion is further
warranted by the statistical nature of the "noise" which is usually the limiting
factor in the signal detection process. In other words, even if all the envi-
ronmental factors were precisely known, a range prediction would not be likely
to be verified exactly by the result of a single experiment. A statistical
prediction refers to the average result of many trials. Therefore, radar range
prediction is not an exact science. (In fact, the lesson of quantum mechanics
seems to be that there is no such thing as an exact science in the strict sense.)

Nevertheless, calculations to predict radar range are useful. However inexact
they may be on an absolute basis, they permit meaningful comparisons of the ex-
pected relative performance of competing system designs, and they indicate the
relative range performance change to be expected if the radar parameters or en-
vironmental conditions are changed. They are therefore a powerful tool for the
system designer. The predicted range is a figure of merit for a proposed radar
system. It is not necessarily a complete one, since other factors such as target-
position-measurement accuracy, data rate, reliability, serviceability, size,
weight, and cost may also be important. Despite the inexactness of range predic-
tions in the absolute sense, the error can be made small enough that the calcu-
lated range is a good indication of the performance to be expected under average
environmental conditions. Section 2.10 is a more detailed discussion of prediction
accuracy.

Attempts to evaluate range prediction factors accurately, to better than per-
haps 1 dB, are sometimes disparaged on the grounds that some factors are un-



likely to be known with accuracy in operational situations and that hence it is
useless to seek better accuracy for any factor. Although there is some basis for
this viewpoint, the overall accuracy will be unnecessarily degraded if the accu-
racy of all the factors in the equation is deliberately reduced. Therefore it is rec-
ommended that range predictions be based on as careful an evaluation of all the
factors as is possible. A goal of 0.1 dB accuracy is perhaps reasonable, although
admittedly it may be impossible to evaluate all the factors in the equation with
that degree of precision.

Historical Notes. Possibly the first comprehensive treatise on radar
maximum-range prediction was that of Omberg and Norton,1 published first as
a U.S. Army Signal Corps report in 1943. It presents a fairly detailed range
equation and contains information on evaluating some of the more
problematical factors, such as multipath interference and minimum detectable
signal, within the limitations of the then-available knowledge. The signal
detection process was assumed to be based on visual observation of a cathode-
ray-tube display. The antenna was assumed to "searchlight" the target.
Statistical aspects of signal detection were not considered.

D. O. North,2 in a classical report published with a military security classifi-
cation in 1943, outlined the basic theory of a statistical treatment of signal detec-
tion. (This report was republished in Proceedings of the IEEE, but not until
1963.) He introduced the concepts that are now called probability of detection
and false-alarm probability, and he clearly delineated the role of integration in
the detection of pulse signals. This report also introduced the concept of the
matched filter, a contribution for which it had achieved some recognition prior to
1963. But except for the matched-filter concept, its contributions to signal detec-
tion theory were virtually unrecognized by radar engineers generally until the re-
port was republished 20 years after its first appearance.

In a famous report3 first published in 1948 and republished in IRE Transac-
tions on Information Theory in 1960, J. I. Marcum extensively developed the sta-
tistical theory of detection with the aid of machine computation, referencing
North's report. He computed probabilities of detection as a function of a range
parameter related to signal-to-noise ratio, for various numbers of pulses inte-
grated and for various values of a false-alarm parameter which he designated
false-alarm number. He employed this type of computation to study the effects of
various amounts and kinds of integration, different detector (demodulator) types,
losses incurred by "collapsing" one spatial coordinate on the radar display, and
various other effects. His results are presented as curves for probability of de-
tection as a function of the ratio of the actual range to that at which the signal-
to-noise ratio is unity, on the assumption that the received-signal power is in-
versely proportional to the fourth power of the range. Since this proportionality
holds only for a target in free space, application of Marcum's results is sometimes
complicated by this mode of presentation.

Marcum considered only steady signals (target cross section not varying dur-
ing the period of observation), and most of his results assume the use of a square-
law detector. Robertson4 has published exceptionally detailed and useful steady-
signal results applicable to the linear-rectifier detector, which is the type of
detector almost universally used. (The square-law-detector results are also useful
because they differ very little from the linear-detector results.) Swerling extended
Marcum's work to include the case of fluctuating signals.5 His report was repub-
lished in IRE Transactions on Information Theory in 1960. Fehlner6 recomputed
Marcum's and Swerling's results and presented them in the more useful form of



curves with the signal-to-noise power ratio as the abscissa. The fluctuating-signal
problem has subsequently been further treated by Kaplan,7 Schwartz,8

Heidbreder and Mitchell,9 Bates,10 and others.
Hall11 published in 1956 a comprehensive paper on radar range prediction in

which the concepts of probability of detection, false-alarm probability, the rela-
tive effects of predetection and postdetection integration, and the effects of scan-
ning the antenna beam were considered. The range equation was formulated in
terms of an ideal (matched-filter) utilization of the available received-signal
power, with loss factors to account for departures from the ideal.

Blake12 published an updating of the subject in 1961, applying recent advances
in system-noisc-tcmperature calculation, atmospheric absorption, plotting of cov-
erage diagrams based on a realistic atmospheric refractive-index model, and
multipath-interference calculation. This work was followed by Naval Research
Laboratory (NRL) reports13 and a book14 in which further details were pre-
sented.

Contributions to the subject of range prediction have also been made by many
others, far too numerous to mention by name. Only the major contributions can
be recognized in this brief history. Special mention should be made, however, of
the many contributions in two volumes (13 and 24) of the MIT Radiation Labo-
ratory Series, edited by Kerr15 and by Lawson and Uhlenbeck.16 Much use is
made in this chapter of results originally published in those volumes.

2.2 RANGEEQUATIONS

Radar Transmission Equation. The following equation, in the form given in
Kerr,15 is called the transmission equation for monostatic radar (one in which
the transmitter and receiver are colocated):

P1. G1G^K2F2F2

-P, = (4^)3*4 W

where Pr = received-signal power (at antenna terminals)
Pt = transmitted-signal power (at antenna terminals)
Gt = transmitting-antenna power gain
Gr = receiving-antenna power gain
a = radar target cross section
X = wavelength

Ff = pattern propagation factor for transmitting-antenna-to-target path
Fr = pattern propagation factor for target-to-receiving-antenna path
R - radar-to-target distance (range)

This equation is not identical to Kerr's; he assumes that the same antenna is
used for transmission and reception, so that GfGr becomes G2 and Ft

2Fr
2 be-

comes F4. The only factors in the equation that require explanation are the pat-
tern propagation factors F1 and F1.. The factor Ft is defined as the ratio, at the
target position, of the field strength E to that which would exist at the same dis-
tance from the radar in free space and in the antenna beam maximum-gain direc-
tion, E0. The factor F1. is analogously defined. These factors account for the pos-
sibility that the target is not in the beam maxima (G, and Gr are the gains in the



maxima) and for any propagation gain or loss that would not occur in free space.
The most common of these effects are absorption, diffraction and shadowing,
certain types of refraction effects, and multipath interference.

For a target in free space and in the maxima of both the transmit and receive
antenna patterns, Ft = Fr = 1. Detailed definitions of these and other range-
equation factors are given in Sees. 2.3 to 2.7.

Maximum-Range Equation. Equation (2.1) is not a range equation as it
stands, although it can be rewritten in the form

\w*wr
L (47T)3 Pr \

This equation states that R is the range at which the received-echo power will be
Pr if the transmitted power is Pt, target size a, and so forth. It becomes a
maximum-range equation by the simple expedient of attaching subscripts to Pr
and R so that they become Pr>min and /?max- That is, when the value of Pr in Eq.
(2.2) is the minimum detectable value, the corresponding range is the maximum
range of the radar.

However, this is a very rudimentary maximum-range equation, of limited use-
fulness. A first step toward a more useful equation is replacement of Pr by a more
readily evaluated expression. This is done by first defining the signal-to-noise
power ratio:

SIN = P1IPn (2.3)

where Pn is the power level of the noise in the receiving system, which deter-
mines the minimum value of Pr that can be detected. This noise power, in turn,
can be expressed in terms of a receiving-system noise temperature Ts\

Pn = kTsBn (2.4)

where k is Boltzmann's constant (1.38 x 10~23 Ws/K) and Bn is the noise band-
width of the receiver predetection filter, hertz. (These quantities are defined
more completely in Sees. 2.3 and 2.5.17) Therefore,

Pr = (SIN) KT8Bn (2.5)

This expression can now be substituted for Pr in Eq. (2.2).
A further convenient modification is to redefine Pt as the transmitter power at

the terminals of the transmitter, rather than [as in Eq. (2.1)] the usually somewhat
smaller power that is actually delivered to the antenna terminals because of loss
in the transmission line. This redefinition is desirable because when radar system
designers or manufacturers specify a transmitter power, the actual transmitter
output power is usually meant.

With this changed definition, Pt must be replaced by /VL,, where Lt is a loss
factor defined as the ratio of the transmitter output power to the power actually
delivered to the antenna. (Therefore, Lt ^ 1.)

It will later prove convenient to introduce additional loss factors similarly re-
lated to other factors in the range equation. These loss factors are multiplicative;



that is, if there are, for example, three loss factors L1, L2, and L3, they can be
represented by a single system loss factor L = L7L2L3. The resulting maximum-
range equation is

. r pfifirfFW r
*max [(410'(5/AOn^WJ u>6;

The quantities (S/N)min and J5 as here defined are to be evaluated at the
antenna terminals, and that fact detracts from the utility of this form of the
equation. As thus defined, (S/N)min is not independent of Bn, and the depen-
dence is difficult to take into account in this formulation. If that dependence
were ignored, this equation would imply that /?max is an inverse function of
Bn, i.e., if all the other range-equation factors were held constant, RmSLX could
be made as large as desired simply by making Bn sufficiently small. This is
well known to be untrue. To remedy this difficulty, several factors must be
considered. It is convenient to do this in terms of a particular transmitted
waveform.

Pulse Radar Equation. Equation (2.6) does not specify the nature of the
transmitted signal; it can be CW (continuous-wave), amplitude- or
frequency-modulated, or pulsed. It is advantageous to modify this equation
for the specific case of pulse radars and in so doing to remove the
"bandwidth" difficulty encountered in using Eq. (2.6). Pulse radars are of
course the most common type. As will be shown, although the equation
thus modified will ostensibly be restricted to pulse radars, it can in fact be
applied to other types of radar by appropriate reinterpretation of certain
parameters.

D. O. North2 demonstrated that the detectable signal-to-noise ratio (Sl
A0min will have its smallest possible value when the receiver bandwidth Bn has
a particular (optimum) value and that this optimum value of Bn is inversely
proportional to the pulse length T. This implies that an equation can be written
with pulse length in the numerator rather than with bandwidth in the denom-
inator. North also showed that signal detectability is improved by integrating
successive signal and noise samples in the receiver and that the detectability is
a function of the total integrated signal energy. (The integration process is dis-
cussed in Sec. 2.4.) Finally, he showed that when the receiver filter is
matched to the pulse waveform, the ratio of the received-pulse energy to the
noise power spectral density at the output of the receiver filter is maximized
and is equal to the signal-to-noise power ratio at the antenna terminals. The
term matched in this context means, partially, that the filter bandwidth is op-
timum. The full meaning is that the filter transfer function is equal to the com-
plex conjugate of the pulse spectrum.

Detectability Factor. An equation based on these facts can be derived by
utilizing a parameter called detectability factor, defined by the Institute of
Electrical and Electronics Engineers (IEEE)18 as follows: 44In pulsed radar, the
ratio of single-pulse signal energy to noise power per unit bandwidth that
provides stated probabilities of detection and false alarm, measured in the
intermediate-frequency amplifier and using an intermediate-frequency filter
matched to the single pulse, followed by optimum video integration." Deferring



for the moment discussion of the meaning of some aspects of this definition, it
can be expressed mathematically as follows:*

D0 = EJN* = PtT/kTs (2.7)

where D0 is the detectability factor, Er is the received-pulse energy, and N0 is the
noise power per unit bandwidth, both measured at the output of the receiver filter
(i.e., at the demodulator input terminals).

The next step in this reformulation of the range equation is to define a band-
width correction factor CB, to allow for the possibility that the receiver filter
bandwidth Bn may not be optimum. This factor is defined by the following
relationship:

(5/AOmuA. = tf/AOminCoA, optQ = AA., optQ (2.8)

where Bn^opt is the optimum value of Bn. The factor CB has been named the band-
width correction factor because it was originally defined in terms of bandwidth op-
timization, but in actuality it is a filter mismatch factor, in the North matched-filter
sense. As Eq. (2.8) implies, CB^\. Evaluation of CB is discussed in Sec. 2.3.

The quantity (S/N)min(0) in Eq. (2.8) is the optimum-bandwidth (matched-filter)
value of (S/N)min, which North showed to be equal to D0. It is this fact that al-
lows the range equation to be written, as desired, in terms of the signal-to-noise
ratio at the detector input terminals (filter output) rather than the ratio at the an-
tenna terminals.

North deduced that Bnopi = I/T exactly. As will be discussed later, some ra-
dar detection experiments with human observers have subsequently suggested
that the constant of proportionality may not be exactly unity. However, North's
analysis is theoretically correct for pulses of rectangular shape and for the defi-
nition to be given in Sec. 2.3 for the noise bandwidth Bn. For pulses of other
shapes the pulse-length-bandwidth relationship is subject to the particular defi-
nition used for the pulse length. That definition is not an issue, of course, when
the pulse shape is rectangular.

Based on that result, the range equation can be written with pulse length in the
numerator by means of the following equivalence, in terms of the parameters of
Eq. (2.8):

(SIN)n^nBn = AAA (2.9)

The expression of the left-hand side of Eq. (2.9), where it occurs in the denomi-
nator of Eq. (2.6), can now be replaced by the expression of the right-hand side.
The result is the desired pulse radar form of the range equation:

IP/rGfiptfFfF*}™D = _£ i L i L_ n 1 (Yl
R™ [ (4^kT1D0C8L \ (2'10)

*In some of the literature it is stated that the matched-filter output signal-to-noise ratio is 2EJN0.
That statement is based on defining peak signal power as the instantaneous value occurring not only at
the peak of the output-pulse waveform but also at the peak of an RF cycle, where the instantaneous
power is theoretically twice the average power. North's definition, based on the signal power averaged
over an RF cycle, is consistent with the definition of noise power as the average over both the RF cycles
and the random noise fluctuations.



A primary advantage of this formulation of the equation is that standard
curves for the parameter D0, as a function of the number of pulses integrated, are
available, with the probabilities of detection and false alarm as parameters (Sec.
2.4). Calculation of these curves is necessarily done in terms of D0, the signal-
to-noise ratio at the demodulator input terminals.

The emphasis of this equation on the significance of the pulse energy (the
product PtT in the numerator) is valuable to the system designer. It also provides
a simple answer to the question of which pulse length to use in the range equation
when the radar employs pulse compression, in which a coded pulse waveform of
relatively long duration is transmitted and then "compressed" to a short pulse
upon reception. The correct answer is deduced from the fact that the product P,T
must equal the transmitted pulse energy. Therefore if the pulse power Pt is the
power of the long (uncompressed) transmitted pulse, then T must be the duration
of that pulse.

A further advantage of this form of the equation, or more specifically of the
definition of the detectability factor, is the indicated dependence of the radar de-
tection range on the integration of successive pulses, if any, that takes place in
the receiving system. Integration is discussed in Sec. 2.4.

Finally, as was mentioned earlier, this formulation of the range equation, al-
though derived specifically in terms of pulse radar parameters, can be applied to CW
radars and to radars that utilize forms of signal modulation other than pulses. Its ap-
plication to these other radar types is accomplished by redefining the parameters T
and D0. Details of this procedure are presented in Ref. 14, Chaps. 2 and 9.

Probabilistic Notation. It has been mentioned (Sec. 2.1) that the radar
signal detection process is basically probabilistic or statistical in nature. This
results from the nature of the noise voltage that is always present in the
receiver circuits. This voltage is randomly varying or fluctuating, and when it is
intermixed with a radar echo signal, it becomes impossible to tell with certainty
whether a momentary increase of the receiver output is due to a signal or to a
chance noise fluctuation. However, it is possible to define probabilities for
these two possibilities and to discuss the detection process in terms of them in
a quantitative manner. The probability that the signal, when present, will be
detected is called the probability of detection, Pd, and the probability that a
noise fluctuation will be mistaken for a signal is called the false-alarm
probability, Pfa.

The notations /?max, Pr,min> and (S/N)min can then be replaced by more precise
notation, using subscripts to denote the applicable values of Pd and Pfa. How-
ever, the/a subscript is ordinarily suppressed, though implied. Thus R5Q can de-
note the range for 0.5 (i.e., 50 percent) probability of detection and some sepa-
rately specified false-alarm probability.

If the target cross section a fluctuates, this fluctuation will alter the signal-
plus-noise statistics. As mentioned in Sec. 2.1, this problem has been analyzed by
Swerling5 and others.6"10 Curves have been calculated that allow determining the
appropriate value OfD0 for the fluctuating-signal case, for various probabilities of
detection and false alarm (Sec. 2.4).

Automatic Detection. Detection* is said to be automatic if the decision
concerning the presence or absence of a received signal is made by a purely

*A note on various meanings of the words detect, detector, and detection is desirable here. In radio
usage, a detector has come to mean either a frequency converter (e.g., a superheterodyne first detector)
or a demodulator (often the "second detector" of a superheterodyne receiver, which is usually a linear
rectifier). Then, detection means the waveform modification produced by such a device. An automatic



physical device, without direct human intervention. Such a device, described
by North,2 establishes a threshold voltage level (for example, by means of a
biased diode). If the processed (e.g., integrated) receiver output exceeds the
threshold (as evidenced by diode current flow), some mechanism is actuated to
indicate this fact in an unequivocal fashion. The mechanism could be the
lighting of a light, the ringing of a bell, or more generally the setting of a bit to
1 in a binary data channel wherein a O corresponds to no signal. Various
additional consequences may then automatically ensue. The analysis of radar
detection can thus be regarded as a problem in statistical decision theory.

Bistatic Radar Equation. The foregoing equations assume that the
transmitting and receiving antennas are at the same location (monostatic radar).
A bistatic radar (Chap. 25) is one for which the two antennas are widely
separated, so that the distance and/or the direction from the transmitting
antenna to the target are not necessarily the same as the distance and/or
direction from the receiving antenna to the target. Moreover, since the signal
reflected from the target to the receiving antenna is not directly backscattered,
as it is for monostatic radar, the target cross section is not usually the same
(for a given target viewed in a given aspect by the transmitting antenna). A
bistatic radar cross section ab is defined to apply for this situation. The symbol
a in the preceding equations implies a monostatic cross section. Range
equations for bistatic radar are obtained from the foregoing monostatic
equations by replacing the range R and the target cross section a by the
corresponding bistatic quantities. The bistatic equivalent of R is\/RtRn where
Rt is the distance from the transmitting antenna to the target and Rr is the
distance from the target to the receiving antenna.

Equations in Practical Units. The equations that have been given are valid
when a consistent system of units is used, such as the rationalized meter-
kilogram-second (mks) system. In many applications, however, it is convenient
or necessary to employ "mixed" units. Moreover, it is usually more
convenient to express the wavelength X in terms of the equivalent frequency in
megahertz. It is also desirable to combine all the numerical factors and the
various unit-conversion factors into a single numerical constant. For a
particular system of mixed units, the following equation is obtained from Eq.
(2.10):

P - 1?0 ?[
/>/(kW)TM<sfi^r^/2^r211/4

 r? -n
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The subscript notation Rm&x is now meant to imply the range corresponding to
specified detection and false-alarm probabilities. For this equation, the range is
given in international nautical miles. (One international nautical mile is exactly
1852 m.) The target cross section a is in square meters, transmitter power Pt in
kilowatts, pulse length T in microseconds, frequency/in megahertz, and system
noise temperature T5 in kelvins. (All other quantities are dimensionless.)

If the range is desired in units other than nautical miles (all other units remain-
ing the same), in place of the factor 129.2 the following numerical constants
should be used in Eq. (2.11):

detector, however, is a decision-making device—for example, a device that replaces the human observer
of a cathode-ray-tube display—and in that context detection is the making of a positive decision. In this
chapter the meaning will ordinarily be evident from the context. Where confusion might otherwise re-
sult, the term detection-decision device may be used to denote an automatic detector.



Range units

Statute miles
Kilometers
Thousands of yards
Thousands of feet

Constant, Eq. (2.11)

148.7
239.3
261.7
785.0

A decibel-logarithmic form of the range equation is sometimes useful. An
equation of that type, corresponding to Eq. (2.11), is readily obtained as the al-
gebraic sum of the logarithms of the terms of that equation (with appropriate mul-
tipliers for the decibel format and for exponents), since it involves only multipli-
cation, division, and exponentiation.

2.3 DEFINITION AND EVALUATION OF RANGE
FACTORS

There is an element of arbitrariness in the definition of most of the factors of
the radar range equation, and for some of them more than one definition is in
common use. Since the definitions in these cases are arbitrary, one definition
is in principle as good as another. However, once a definition has been chosen
for one factor, there is no longer freedom of choice for one or more of the
others. The factors are interdependent, and mutual compatibility is essential.
A set of definitions that are believed to be mutually compatible will be given
here. Also, information needed for evaluating these factors will be given in-
sofar as is practicable. Certain range-equation factors that present special
problems will be considered at greater length in subsequent sections of the
chapter.

Transmitter Power and Pulse Length. The radar transmission equation,
from which all the subsequent range equations are derived, is an equation for
the dimensionless ratio Pt/Pr. Consequently, the most basic requirement on the
definition of Pt is that it agree with the definition of Pr. For a CW radar, the
power (averaged over an RF cycle) is constant, and there is no definition
problem. For a pulse radar, both Pt and Pr are usually defined as the pulse
power, which is the average power during the pulse. More precisely,

-T 12

Pt = \fw(t)dt (2.12)

where W(t) is the instantaneous power (a function of time, t). The definition of
W(O, however, excludes "spikes," "tails," and any other transients that are not
useful for radar detection. The time interval T is the pulse period (= 1/PRF, where
PRF is the pulse repetition frequency in pulses per second). Because of the ex-
clusion of nonuseful portions of the waveform (as it exists at the transmitter out-
put terminals), Pt as thus defined may be called the effective pulse power. It is
often referred to as the peak power. However, peak power more properly signi-
fies the power level at the peak of the pulse waveform (averaged over an RF
cycle), and pulse power is more appropriate.



In the transmission equation, Eq. (2.1), Pt and Pr are the transmitted and re-
ceived powers at the antenna terminals. As was mentioned in Sec. 2.2, Pt is now
defined at the transmitter output terminals, and any loss between these terminals
and the antenna input terminals must be expressed as a loss factor Lt.

The pulse power P1 and the pulse length T must be defined so that their prod-
uct is the pulse energy. Any definition of T will produce this result if the same
definition is used in Eq. (2.12). The customary definition, and the one recom-
mended here, is the time duration between the half-power points of the envelope
of the RF pulse (0.707-V points). For some purposes, such as analyzing the range
resolution or accuracy, this arbitrary definition of the pulse length is not permis-
sible. But the half-power definition is customary and acceptable for use in the
range equation.

The range equation can be written with the product P/r replaced by the pulse
energy Ef. The more detailed notation is used here because, for ordinary pulse
radars, Pt and T are usually given explicitly and Et is not. However, the use of E1
in the equation does have the advantage of avoiding the problems of defining P1
and T, and it is especially useful when complicated waveforms are transmitted.

If coherent integration for a fixed integration time is assumed, the equation
can also be written with the transmitted average power in the numerator. For
simple pulse radars, the average power is the product of pulse power, pulse
length, and pulse repetition frequency. In this average-power formulation, the av-
erage power Pt is multiplied by the integration time tf (assumed to be long com-
pared with the interpulse period) to obtain the transmitted energy. Then the value
of D0 used is that which would apply if detection were based on observation of a
single pulse. (See Sec. 2.4, Fig. 2.3.) The average-power formulation is especially
useful for CW or pulse doppler radars.

Antenna Gain, Efficiency, and Loss Factor. The gains Gt and Gr are defined
as the power gains of the antennas in the maximum-gain direction. If a target
of interest is at an elevation angle not in the beam maxima, that fact is
accounted for by the pattern propagation factors Ft and Fr, discussed in Sec.
2.6. The maximum power gain of an antenna is equal to its directivity
(maximum directive gain) multiplied by its radiation efficiency.19 The
directivity D is defined in terms of the electric-field-strength pattern £(6,4>) by
the expression

D = 2, ,
 4^""" (2.13)

J j£2(6,<|>) sin 6 d9 d$
o o

where 6 and <t> are the angles of a spherical-coordinate system whose origin is at
the antenna and £max is the value of £(0,4>) in the maximum-gain direction.

The radiation efficiency of the transmitting antenna is the ratio of the power
input at the antenna terminals to the power actually radiated (including minor-
lobe radiation). In terms of the receiving antenna, the equivalent quantity is the
ratio of the total signal power extracted from the incident field by the antenna,
with a matched-load impedance, to the signal power actually delivered to a
matched load. The reciprocal of the radiation efficiency is the antenna loss factor
L,,, which plays a part in the calculation of antenna noise temperature (Sec. 2.5).

Measured antenna gains are usually power gains, whereas gains calculated



from pattern measurements or theory are directive gains. If the antenna gain fig-
ures supplied for use in the range equations of this chapter are of the latter type,
they must be converted to power gains by dividing them by the appropriate loss
factor. For many simple antennas the ohmic losses are negligible, and in those
cases the power gain and the directive gain are virtually equal. However, this is
by no means a safe assumption in the absence of specific knowledge. Array an-
tennas in particular are likely to have significant ohmic losses in waveguides or
coaxial lines used to distribute the power among the radiating elements.

If separate transmitting and receiving antennas are used and if their maximum
gains occur at different elevation angles (this is a possible though not a common
situation), appropriate correction can be made by means of the pattern factors
/,(8) and/r(6), contained in the pattern propagation factors Ft and Fr (Sec. 2.6).

Antenna Beamwidth. This property of the antenna does not appear
explicitly in the range equations, but it affects the range calculation through its
effect on the number of pulses integrated when the antenna scans. The
conventional definition is the angular width of the beam between the half-
power points of the pattern. Pattern is used here in the usual antenna sense,
for one-way transmission. It is not the two-way pattern of the radar echo signal
from a stationary target as the antenna scans past it.

If a radar target, as viewed from the radar antenna, has an angular dimension
that is appreciable compared with the beamwidth, the target cross section be-
comes a function of the beamwidth (see Sec. 2.8). For computing an effective
value of a in this case, in principle a special definition of beamwidth is needed
(Ref. 15, p. 483). For practical work, however, the error that results from using
the half-power beamwidth in this application is usually acceptable.

Target Cross Section. The definition of radar target cross section that
applies for use in the foregoing radar range equations is given in Chap. 11, and
the reader is referred to that chapter for a detailed discussion of the subject.
Here mention will be made of a few aspects of the definitions that are of
particular significance to the range prediction problem.

Targets can be classified as either point targets or distributed targets. A point
target is one for which (1) the maximum transverse separation of significant scat-
tering elements is small compared with the length of the arc intercepted by the
antenna beam at the target range and (2) the maximum radial separation of scat-
tering elements is small compared with the range extent of the pulse. At distance
R from the antenna, the transverse dimension of the antenna beam is R times the
angular beamwidth in radians. The range extent of the pulse is cr/2, where c is the
speed of wave propagation in free space, 3 x 105 km/s, and T is the pulse duration
in seconds. Most of the targets for which range prediction is ordinarily of interest
are point targets, e.g., aircraft at appreciable distances from the radar.

However, range predictions for distributed targets are sometimes wanted.
The moon, for example, is a distributed target if the radar beamwidth is com-
parable to or less than 0.5° or if the pulse length is less than about 11.6 ms. A
rainstorm is another example of a distributed target. Often, distributed targets
are of interest because echoes from them (called radar clutter) tend to mask
the echoes from the point targets whose detection is desired (see Sec. 2.8).
Echoes from rain may be regarded as clutter when they interfere with detec-
tion of aircraft or other point targets, but they are themselves the signals of
prime interest for weather radar.



The radar range equation is derived initially for a point target, and when
that equation or the subsequent equations derived from it are used to predict
the detection range for distributed targets, complications arise. In many cases,
however, the point-target equation can be used for distributed targets by em-
ploying a suitable "effective" value of a (Sec. 2.8).

The cross section of any nonspherical target is a function of the aspect angle
from which it is viewed by the radar. It may also be a function of the polarization
of the radar electromagnetic field. Therefore, in order to be wholly meaningful, a
radar range prediction for a specific target, such as an aircraft, must stipulate the
target aspect angle assumed and the polarization employed. Ordinarily, the nose
aspect of an aircraft (approaching target) is of principal interest. The commonly
used polarizations are horizontal, vertical, and circular. Tabulations of radar
cross-section measurements of aircraft sometimes give nose, tail, and broadside
values.

If the values are obtained from dynamic (moving-target) measurements,
they are usually time averages of fluctuating values; otherwise they are static
values for a particular aspect. Since the instantaneous cross section of a target
is a function of the aspect angle, targets that are in motion involving random
changes of aspect have cross sections that fluctuate randomly with time, as
was mentioned in Sec. 2.2. This fluctuation must be taken into account in the
calculation of probability of detection, as will be discussed in Sec. 2.4. When
a fluctuates, the value to be used in the range equation as formulated here is
the time average.

Because of the wide variation of cross-section values of real targets, the range
performance of a radar system is often stated for a particular target-cross-section
assumption. A favorite value for many applications is 1 m2. This represents the
approximate cross section of a small aircraft, nose aspect, although the range for
different "small" aircraft may be from less than 0.1 m2 to more than 10 m2. Ra-
dars are often performance-tested by using a metallic sphere, sometimes carried
aloft by a free balloon, as the target because the cross section of a sphere can be
accurately calculated and it does not vary with the aspect angle or the polariza-
tion.

A special definition problem arises when the target is large enough to be
nonuniformly illuminated by the radar. A ship, for example, may be tall
enough so that the pattern propagation factor F has different values from the
waterline to the top of the mast. This matter is discussed in Ref. 15, p. 472 ff.

Wavelength (Frequency). There is ordinarily no problem in definition or
evaluation (measurement) of the frequency to be used in the radar range
equation. However, some radars may use a very large transmission bandwidth,
or they may change frequency on a pulse-to-pulse basis, so that a question can
exist as to the frequency value to be used for predicting range. Also, the
presence of/(or X) in the range equations makes it clear that the range can be
frequency-dependent, but the exact nature of the frequency dependence is not
always obvious because other factors in the range equation are sometimes
implicitly frequency-dependent. Therefore an analysis of how the range
depends on frequency can be rather complicated, and the answer depends
partly on what factors are regarded as frequency-dependent and which ones are
held constant as the frequency is changed. For example, most antennas have
gain that is strongly frequency-dependent, but some antenna types are virtually
frequency-independent over a fairly wide frequency band.



Bandwidth and Matching Factors. The frequency-response width (band-
width) of the receiver selective circuits appears explicitly in Eqs. (2.4) to (2.6),
but it is an implicit factor in the other range equations as well, through the
factor CB. From Eq. (2.4) it is clear that Bn directly affects the noise level in
the receiver output. In general it also affects the signal, but not necessarily in
the same manner as the noise is affected, because the signal spectrum is not
usually uniform. There is a value of Bn that optimizes the output signal-to-noise
ratio, as indicated by Eq. (2.8), and this optimum bandwidth is inversely
proportional to the pulse length T. (This statement applies to pulse compression
radars as well as to others if T is, in this context, the compressed pulse length,
since it is the compressed pulse that is amplified in the receiver. However, as
has been emphasized in Sec. 2.2, in the numerator of the range equation the
uncompressed pulse length must be used along with the actual radiated pulse
power, P1.)

Since the range equation (2.6) and those subsequently derived from it incor-
porate the assumption of Eq. (2.4) (namely, that the noise output power of the
receiver is equal to /CT^nG0), the definition of Bn—the noise bandwidth—must
conform to that assumption. The resulting correct definition, due to North,20 is

X

B» = (k!G(fW <2-14)

where G0 is the gain at the nominal radar frequency and G(/) is the
frequency-power gain characteristic of the receiver predetection circuits, from
antenna to detector.

The definition specifies G(/) to be the response characteristic of the
predetection circuits only. That is because for maximum postdetection signal-to-
noise ratio the video bandwidth should be equal to at least half of the
predetection bandwidth; and if it is of this width or wider, its exact width has
little or no effect on signal detectability (Ref. 16, p. 211 ff.).

It is common practice to describe receiver bandwidth as the value between
half-power points of the frequency-response curve. Fortunately, this value is usu-
ally very close to the true noise bandwidth, although the exact relationship of the
two bandwidths depends on the particular shape of the frequency-response curve
(Ref. 16, p. 177).

The bandwidth correction factor C3 in Eqs. (2.10) and (2.11) accounts for the
fact that if Bn is not the optimum value, a value of signal-to-noise ratio larger than
the optimum-bandwidth value D0 is required. Therefore CB ^ 1. From data ob-
tained in signal detection experiments during World War II at the Naval Research
Laboratory, Haeff21 devised the following empirical expression:

c"£['*£r
where Bn is the noise bandwidth, T is the pulse length, and a is the product of T
and Bn>opl (optimum bandwidth). Figure 2.1 is a plot of Haeff s equation.

Actually, Haeff deduced from his experiments, as did North from theoretical
analysis, that Bnj0pl = I/T; that is, a = 1, for rectangular-shaped pulses. How-



B/B0pt
FIG. 2.1 Bandwidth correction factor CB as a function of bandwidth Bn relative to op-
timum bandwidth £opt; plotted from Haeffs empirical formula, Eq. (2.15).

ever, on the basis of experiments at the Massachusetts Institute of Technology
(MIT) Radiation Laboratory conducted somewhat later (also with rectangular
pulses), it was concluded (Ref. 16, p. 202) that a = 1.2 for detection of signals by
visual observation of cathode-ray-tube displays. Figure 2.2 is a plot of the Radi-
ation Laboratory experimental results. The value 1.2 has subsequently been
widely used for determining #n,opt

 m radar design and for computing CB in radar
range prediction.11'12 However, North* has suggested that the a = 1.2 figure
may be based on a misinterpretation of the Radiation Laboratory data. Also, it
has been notedt that the number of actual data points in Fig. 2.2 may be too few
on which to base a good estimate of the optimum. Consequently, it is possible
that the value of a for human observation of visual displays is much closer to 1
than was deduced by Lawson and Uhlenbeck. Fortunately, the minima of the
curves (Fig. 2.2) are very broad and flat, and therefore the exact value of a does
not make much difference for the usual range of values of .BnT.

The interpretation of CB as a factor that accounts only for nonoptimum width
of the predetection filter is permissible for simple pulse shapes and approximate
results, but in principle it must also account for the complete amplitude-phase
characteristic of the filter: its departure from a matched-filter characteristic. The

*In a private communication to the author in 1963.
tBy M. I. Skolnik, editor of this handbook, in his review of this chapter.
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FIG. 2.2 Experimental results showing the effect of
bandwidth (parameter BT) on 90 percent probability
detectability factor D^90), with pulse repetition fre-
quency (PRF) as a parameter. The experiments were
performed during World War II at the MIT Radiation
Laboratory. (From Ref. 15, Fig. 8.7.)

matched-filter condition as stated by North2 is that the receiver transfer charac-
teristic must be the complex conjugate of the spectrum of the echo at the
receiving-antenna terminals.

2.4 MINIMUM DETECTABLE SIGNAL-TO-NOISE
RATIO

In Sec. 2.3, factors in the range equations were defined, and some information on
how to evaluate them in typical cases was given. However, several very impor-
tant factors were not covered because they are of sufficient importance to war-
rant more extensive treatment in separate sections. In this section and in Sees.
2.5 to 2.7, these additional factors will be discussed.

The quantities Pr,min, (S/N)min9 and D0 are all related, as indicated in the de-
velopment of Eqs. (2.3) to (2.9). Determination of the appropriate numbers to use
for these quantities in their respective equations is a basic problem of radar range
prediction. As will be seen, one of the problems is to define the meaning of de-
tectable.

BT
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Integration of Signals. Detection of radar echo signals is usually (with some
exceptions) accomplished by first integrating (e.g., adding) a sequence of received
pulses and basing the detection decision on the resultant integrated signal voltage.
Integrators that perform this operation will of course necessarily add noise as well
as signals, but it is demonstrable that the ratio of the added signal voltages to the
added noise voltages will be greater than the preintegration signal-to-noise ratio.
Stated otherwise, the detectable signal-to-noise ratio evaluated ahead of an
integrator will be smaller than when detection is performed by using single pulses.

There are many different methods of accomplishing integration. One method
is the use of a feedback-loop delay line with a delay time equal to the interpulse
period, so that signals (and noise) separated by exactly one pulse period will be
directly added. Integration also occurs for visual detection by human radar oper-
ators if the phosphor of the cathode-ray-tube radar display (such as a PPI) has
sufficient luminous persistence. In recent years, integration methods based on
digital circuitry have become practical and are now perhaps the method of choice
in many if not most cases.

The benefit of integration is a function of the number of pulses integrated. If
integration is performed in the predetection stages of a receiver, ideally the ad-
dition of M equal-amplitude phase-coherent signal pulses will result in an output
(integrated) pulse of voltage M times the single-pulse voltage. Adding M noise
pulses, however, will result in an integrated noise pulse whose rms voltage is
only VM times as great as that of a single noise pulse if (as is true of ordinary
receiver noise and many other types of noise) the added noise pulses are not
phase-coherent. Therefore the signal-to-noise voltage-ratio improvement is, ide-
ally, MIvM = VM. Consequently the signal-to-noise power-ratio improvement,
and the reduction of the single-pulse minimum-detectable signal-to-noise power
ratio, is equal to M.

Integration can also be performed after detection. In fact postdetection inte-
gration is used more commonly than is predetection integration, for reasons that
will be explained, but the analysis of the resulting improvement is then much
more complicated. After detection, the signals and the noise cannot be regarded
as totally separate entities; the nonlinear process of detection produces an insep-
arable combination of signal and noise, so that one must then consider the com-
parison of signal-plus-noise to noise. As will be shown, the improvement that re-
sults from this type of integration is usually not as great as with ideal predetection
integration of the same number of pulses. Nevertheless, postdetection integration
produces worthwhile improvement. Moreover, "ideal" predetection integration
is virtually unachievable because the echo fluctuation from most moving targets
severely reduces the degree of phase coherence of successive received pulses.
With rapidly fluctuating signals, in fact, postdetection integration will provide
greater detectability improvement than does predetection integration, as dis-
cussed later in this section under the heading "Predetection Integration."

Number of Pulses Integrated. The number of pulses integrated is usually
determined by the scanning speed of the antenna beam in conjunction with the
antenna beamwidth in the plane of the scanning. The following equation can be
used for calculating the number of pulses received between half-power-beam-
width points for an azimuth-scanning radar:

M= _^ (2.16)
6 RPM cos 6e



where (fr is the azimuth beam width, PRF is the radar pulse repetition frequency in
hertz, RPM is the azimuthal scan rate in revolutions per minute, and Qe is the
target elevation angle. This formula strictly applies only if <j>/cos Qe, the "ef-
fective" azimuth beamwidth, is less than 360°. (At values of 6e for which <|>/cos 6e
is greater than 360°, the number of pulses computed from this formula will obvi-
ously be meaningless. Practically, it is suggested that it be applied only for ele-
vation angles such that <|>/cos Qe is less than about 90°.) This formula is based on
the properties of spherical geometry. The formula also assumes that the beam
maximum is tilted upward at the angle 6e, but it can be applied with negligible
error if Qe is only approximately equal to the beam tilt angle.

The formula for the number of pulses within the half-power beamwidth for an
azimuth- and elevation-scanning radar (which can be applied with minor modifi-
cation to a radar scanning simultaneously in any two orthogonal angular direc-
tions) is

M= *JP (2.17)
6OVyRPM cos O6

where <j> and B are the azimuth (horizontal-plane) and elevation (vertical-plane)
beam widths in degrees, Qe is the target elevation angle, o>v is the vertical scanning
speed in degrees per second, and tv is the vertical-scan period in seconds (in-
cluding dead time if any). This formula should also be restricted to elevation an-
gles for which <|>/cos Qe is less than about 90°. Here M is a function of the target
elevation angle not only explicitly but also implicitly in that o>v may be a function
of 6e.

Some modern radars, especially those capable of scanning by electronic means—
i.e., without mechanical motion of the antenna—employ step scanning. In this
method, the antenna beam is pointed in a fixed direction while a programmed num-
ber of pulses is radiated in that direction. Then the beam is shifted to a new direction,
and the process is repeated. The number of pulses integrated in this scanning method
is thus determined by the programming and not by the beamwidth. Also, the inte-
grated pulses are then all of the same amplitude (except for the effect of target fluc-
tuation), and so there is no pattern loss of the type described in Sec. 2.7. There is,
however, a statistical loss if the target direction and the antenna beam maximum do
not always coincide when the pulses are radiated.

Evaluation of Probabilities. As was mentioned in Sec. 2.2, if a threshold
device is employed to make a decision as to the presence or absence of a signal
in a background of noise, its performance can be described in terms of two
probabilities: (1) the probability of detection, Pd9 and (2) the false-alarm
probability, Pfa. The threshold device is characterized by a value of receiver
output voltage Vt (the threshold, equivalent to Marcum's3 bias level), which, if
exceeded, results in the decision report that a signal is present. If the threshold
voltage is not exceeded at a particular instant, the detector reports "no
signal."

There is always a definite probability that the threshold voltage will be ex-
ceeded when in fact no signal is present. The statistics of thermal random-noise
voltage are such that there is a usually small but nonzero probability that it can
attain a value at least equal to the saturation level of the receiver. (In the math-
ematical theory of thermal noise, there is a nonzero probability that it can attain
any finite value, however large.) The probability that Vt is exceeded when no sig-
nal is present is the false-alarm probability. It is calculated from the equation



Pfa = fPnMdV (2.18)

Vt

where pn(v) is the probability density function of the noise. The probability of
detection is given by the same expression, with the probability density function
that of the signal-noise combination (usually called signal-plus-noise, but the
4'addition" is not necessarily linear):

OC
Pd = J Psn(v)dv (2.19)

The signal-plus-noise probability density function psn(v) depends on the signal-
to-noise ratio as well as on the signal and noise statistics. Also, both pn and psn
are functions of the rectification law of the receiver detector and of any
postdetection processing or circuit nonlinearities. Primarily, however, psn and
therefore the probability of detection are functions of the signal-to*noise ratio.
From Eq. (2.19), the variation of Pd with SIN can be determined. As would log-
ically be assumed, it is a monotonic-increasing function of SIN for a given value
of Vt. Similarly, the variation of Pfa as a function of V1 can be found from Eq.
(2.18); it is a monotonic-decreasing function.

The method of applying these concepts to the prediction of radar range con-
sists of four steps: (1) decide on a value of false-alarm probability that is accept-
able (the typical procedure for making this decision will be described); (2) for this
value of Pf09 find the required value of threshold voltage Vn through Eq. (2.18);
(3) decide on a desired value of Pd (in different circumstances, values ranging
from below 0.5 up to as high as perhaps 0.99 may be selected); and (4) for this
value of Pd and for the value of Vt found in step 2 find the required signal-to-noise
ratio through Eq, (2.19). This requires evaluating the function p5n(v), taking into
account the number of pulses integrated. Iteration is required, in this procedure,
to find the value of D0 corresponding to a specified probability of detection and
number of pulses integrated. The value of Z)0 thus found is the value to be used in
the range equation [e.g., Eqs. (2.10) and (2.11)].

The process of finding the required value of D0 for use in the range equation is
greatly facilitated by curves that relate the number of pulses integrated to D0 with
Pfa and Pd as parameters. Many such curves have been published, and some rep-
resentative ones are given as Figs. 2.3 through 2.7. The principal difficulty in
computing them is determination of the probability density functions pn(v) and
psn(v) and in performing the requisite integrations. North2 gives the exact func-
tions that apply for single-pulse detection with a linear rectifier as detector and
the approximations that apply when many pulses are integrated. The density
functions appropriate to other situations, e.g., square-law detection and fluctua-
tion of signals, are given by various authors.3"10

The decision as to the acceptable level of false-alarm probability is usually
made in terms of a concept called false-alarm time, which will here be defined as
the average time between false alarms. Other definitions are possible; Marcum3

defines it as the time for which the probability of at least one false alarm is 0.5.
However, the average time between false alarms seems a more practically useful
concept. With it, for example, one can compute the average number of false
alarms that will occur per hour, day, year, etc. With this definition, the false-
alarm time is given by



PROBABILITY OF DETECTION
FIG. 2.3 Required signal-to-noise ratio (detectability factor) for a single-
pulse, linear-detector, nonfluctuating target as a function of probability of de-
tection with false-alarm probability (Pfa) as a parameter. (From Ref. 13.)

MT
tfa = -p- (2.20)

1 fa

where M is the number of pulses integrated and T is the pulse duration.
This formula assumes that the integrator output is sampled at time intervals

equal to T. If range gates are employed and M pulses are integrated, if the ON time
of the gate tg is equal to or greater than the pulse length T, and if there is some
fraction of the time 8 when no gates are open (dead time, e.g., just before, during,
and after the occurrence of the transmitter pulse), then the formula is

Mtg

*f" = Pfa(l - 5) (2'21)

These false-alarm-time formulas assume that the receiver predetection noise
bandwidth Bn is equal to or greater than the reciprocal of the pulse length and
that the postdetection (video) bandwidth is equal to or greater than 0.5 Bn (as it
usually is). These assumptions, usually met, amount to assuming that values of
the noise voltage separated by the pulse duration are statistically independent;
this independence occurs for times separated by 1/Bn, sometimes called the
Nyquist interval. Since ordinarily Bn = I/T and tg = T, 1/Bn is sometimes used in
place of T or t in the false-alarm-time equations.

Marcum's false-alarm number ri is related to the false-alarm probability by the
equation
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NUMBER OF PULSES
FIG. 2.4 Required signal-to-noise ratio (detectability factor) as a function of
number of pulses noncoherently integrated, linear detector, nonfluctuating target,
and 0.5 probability of detection. (From Ref. 13.)

I-(I- Pfaf = 0.5 (2.22«)
For the usual large values of n' that are of interest, a highly accurate approximate
solution of this equation for Pfa is

^.!e^.o^l C.22H

Fluctuating Target Cross Section. In general, the effect of fluctuation is to
require higher signal-to-noise ratios for high probability of detection and lower
values for low probability of detection than those required with nonfluctuating
signals. Swerling has considered four cases, which differ in the assumed rate of
fluctuation and the assumed statistical distribution of the cross section. The two
assumed rates are (1) a relatively slow fluctuation, such that the values of a for
successive scans of the radar beam past the target are statistically independent
but remain virtually constant from one pulse to the next, and (2) a relatively fast
fluctuation, such that the values of cr are independent from pulse to pulse within
one beamwidth of the scan (i.e., during the integration time).

The first of the two assumed distributions for the received-signal voltage is of
the Rayleigh form,* which means that the target cross section cr has a probability
density function given by

*The Rayleigh density function for a voltage v is

/ x 2V - V2Ir2

p(v) =-^e

where r is the rms value of v.

DE
TE

CT
AB

ILI
TY

 F
AC

TO
R 

D 0
 (D

EC
IB

EL
S)



NUMBER OF PULSES
FIG. 2.5 Required signal-to-noise ratio (detectability factor) as a func-
tion of number of pulses noncoherently integrated, linear detector,
nonfluctuating target, and 0.9 probability of detection. (From Ref. 13.)

p(<r)==e-°ll} (2.23)
(T

where a is the average cross section. (This is a negative-exponential density func-
tion, but a target having this distribution is called a Rayleigh target because this
distribution of a produces a received signal voltage which is Rayleigh-
distributed.) The second assumed cross-section density function is

P(a) = ̂  e~2^ (2.24)

The first distribution, Eq. (2.23), is observed when the target consists of many
independent scattering elements of which no single one or few predominate.
Many aircraft have approximately this characteristic at microwave frequencies,
and large complicated targets are usually of this nature. (This result is predicted,
for such targets, by the central limit theorem of probability theory.) The second
distribution, Eq. (2.24), corresponds to that of a target having one main scattering
element that predominates together with many smaller independent scattering el-
ements. In summary, the cases considered by Swerling are as follows:

Case 1 Eq. (2.23), slow fluctuation
Case 2 Eq. (2.23), fast fluctuation
Case 3 Eq. (2.24), slow fluctuation
Case 4 Eq. (2.24), fast fluctuation

DE
TE

CT
AB

ILI
TY

 F
AC

TO
R 

D 0
 (D

EC
IB

EL
S)



NUMBER OF PULSES
FIG. 2.6 Required signal-to-noise ratio (detectability factor) as a function of
number of pulses noncoherently integrated, square-law detector, Swerling Case 1
fluctuating target, and 0.5 probability of detection. (From Ref. 13.)

The distribution of Eq. (2.24) is sometimes assumed for a small, rigid streamlined
aircraft at the lower radar frequencies (e.g., below 1 GHz). Subsequent to
Swerling's work, it has been found that many targets of the non-Rayleigh type are
better represented by the so-called log-normal distribution, and analyses have
been made for this case.9

Swerling's Case 1 is the one most often assumed when range prediction is to
be made for a nonspecific fluctuating target. Results for this case are presented in
Figs. 2.6 and 2.7. Curves for the other fluctuation cases and for additional values
of detection probability are given in Refs. 13 and 14.

Detector Laws. A linear detector is a rectifier which has the rectification
characteristic

',:'-?' B? 8} **>
where I0 is the instantaneous output current, V1- is the instantaneous input volt-
age, and a is a positive constant. Typical diodes approximate this law if V1 is
larger than some very small value (e.g., a few millivolts). Such a diode is ordi-
narily used as the second detector of a superheterodyne radar receiver. Also, ap-
preciable RF and IF gain usually precedes the second detector, so that the volt-
age applied to it is usually large enough (typically, an appreciable fraction of a
volt) to ensure this "linear" type of operation.

A square-law detector is one that has the nonlinear characteristic

/O = CtV;2 (2.26)
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NUMBER OF PULSES
FIG. 2.7 Required signal-to-noise ratio (detectability factor) as a function of
number of pulses noncoherently integrated, square-law detector, Swerling Case 1
fluctuating target, and 0.9 probability of detection. (From Ref. 13.)

Marcum3 showed that a square-law detector is very slightly superior to a linear
detector when many pulses are integrated, by about 0.2 dB. For a few pulses in-
tegrated, 10 or less, a linear detector is slightly superior—again, by about 0.2 dB
or less. The mathematical analysis of probability of detection is somewhat more
tractable when a square-law detector is assumed; this is probably its principal ad-
vantage.

The complexity of this matter is further compounded by the fact that, because
of the statistics of the signal-noise superposition, in a linear rectifier there is a
square-law relationship between the signal input voltage and the signal-plus-noise
output voltage for small signal-to-noise ratios. This relationship becomes linear
for large signal-to-noise ratios, as shown by Bennett,22 North, and Rice.23 Be-
cause of this effect, it is sometimes erroneously thought that such a detector be-
comes square-law for small signal-to-noise ratios. But it is the input signal-plus-
noise voltage V1, and not the signal-to-noise ratio, that determines whether a
diode rectifier is a linear or a square-law detector.

Curves for Visual Detection. The curves of Figs. 2.3 to 2.7 apply when the
detection decision is based on an automatic threshold device as described. It is
reasonable to suppose, however, that a human observer of a cathode-ray-tube
display makes decisions in an analogous manner. That is, the equivalent of a
threshold voltage (which would be a luminosity level for the PPI-scope type of
display and a "pip-height" level for the A-scope display) exists somewhere in
the observer's eye-brain system. This threshold, resulting in a particular false-
alarm probability, is probably related to the observer's experience and
personality: his or her innate cautiousness or daring. The probability of
detection probably depends not only on the signal-to-noise ratio in relation to
the threshold but on the observer's visual-mental acuity, alertness or fatigue,
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and experience. Consequently, curves calculated for an automatic threshold de-
cision device cannot be assumed to apply accurately to the performance of a hu-
man observer of a cathode-ray-tube display. But such an assumption does not
give grossly erroneous results, and it is justifiable when experimental human-
observer data are not available or are of questionable accuracy.

Curves based on actual experiments with human observers, analogous to
those of Figs. 2.4 through 2.7, are given in Ref. 14, Chap. 2, along with further
discussion of visual detection.

Other Detection Methods. The discussion and results that have been
presented have assumed perfect postdetection (video) integration of pulses
prior to decision by an automatic threshold device. The noise statistics have
been implicitly assumed to be those of ordinary receiver noise of quasi-uniform
spectral density and (before detection) of gaussian probability density. A great
many other detection procedures and signal-noise statistics are possible. Some
of them are discussed in Ref. 14, Chap. 2.*

Predetection Integration. The results depicted in Figs. 2.3 through 2.7 apply
for perfect postdetection (video) integration of a specified number of pulses. It
was shown by North2 that under ideal conditions predetection integration
results in the smallest possible detectability factor and that for ideal
predetection integration of M pulses the following relation holds:

D0(M) = D^l)IM (2.27)

That is, the minimum detectable signal-to-noise power ratio at the demodulator
input terminals is improved, relative to single-pulse detection, by a factor exactly
equal to the number of pulses integrated, M. For perfect postdetection integra-
tion, the improvement factor is generally less than M, asymptotically approach-
ing M as M becomes indefinitely large.

An exception occurs in the M < 10 region for fast-fluctuating targets and high
probabilities of detection. For those circumstances the postdetection integration
improvement factor can actually exceed M, and under the same circumstances
predetection integration yields little or no improvement. The result of adding suc-
cessive fast-fluctuating signals before detection, with virtually uncorrelated
phases, is practically the same as that of adding noise voltages. Therefore there is
virtually no integration improvement.

Predetection integration is also called coherent integration, because of its de-
pendence on phase coherence of the integrated pulses, and postdetection integra-
tion is called noncoherent integration.

When integration is not perfect, as is always the case practically, if the value
of D0 used in the range equation is based on perfect integration, an imperfect-
integration loss factor or factors must be included in the system loss factor L, as
discussed in Sec. 2.7.

Although the full benefits of predetection integration are realizable only for
nonfluctuating targets, some benefit can be achieved by predetection integration
of a moderate number of slowly fluctuating targets. For such targets, the phase
fluctuation from pulse to pulse is small. This type of integration is being em-
ployed to an increasing extent in modern systems when the utmost sensitivity is
important and when fast fluctuation is not expected.

*Chapter written by Lowell W. Brooks, Technology Service Corporation, Salida, Colo.



Since radial target motion produces a frequency shift of the received-echo sig-
nal (doppler effect) which is proportional to the target's radial velocity, this shift
must be taken into account if predetection integration is used. This is done in
pulse doppler radar (Chap. 17).

Some radar systems that integrate many pulses utilize a combination of coher-
ent and noncoherent integration when the phase stability of the received pulses is
sufficient for some coherent integration but not great enough to allow coherent
integration of the entire pulse train during the antenna on-target dwell time. If the
total number of received pulses is Af and M of them (with M < N) are coherently
integrated and if the coherent integrator is followed by a noncoherent integrator,
then (assuming an appropriate implementation and ideal integrations) the
detectability factor will be

%M,N) = Dv(NIAf)IM (2.28)

where D0(M,AO means the detectability factor for the assumed combination of co-
herent and noncoherent integration and D0(NIM) is the detectability factor for
noncoherent integration of NIM pulses with no coherent integration (e.g., a value
read from curves such as those of Figs. 2.4 through 2.7). As an example, if a train
of N = 24 pulses is received and each set of M = 8 pulses is predetection- (co-
herently) integrated and if the predetection integrator is followed by a
postdetection (noncoherent) integrator, the integration process produces at best a
combined detectability-factor improvement corresponding to that of coherent in-
tegration of 8 pulses and noncoherent integration of 3 pulses.

2.5 SYSTEMNOISETEMPERATURE

The concept of a noise temperature is derived from Nyquist's theorem,24 which
states that if a resistive circuit element is at temperature T (kelvins) there will be
generated in it an open-circuit thermal-noise voltage given by

Vn = VJkTRB volts (2.29)

where k is Boltzmann's constant (1.38054 x 10~23 Ws/K), R is the resistance
in ohms, and B is the bandwidth, in hertz, within which the voltage is measured
(that is, the passband of an infinite-impedance voltmeter). The absence of the fre-
quency in this expression implies that the noise is white—that the spectrum is
uniform and extends to infinitely high frequency. But this also implies infinite en-
ergy, an obvious impossibility, indicating that Eq. (2.29) is an approximation. A
more exact expression, which has frequency dependence, must be used if the ra-
tio flT exceeds about 108, where/is the frequency in hertz and T is the kelvin
temperature of the resistor. Thus Eq. (2.29) is sufficiently accurate at a frequency
of 30 GHz if the temperature is at least 300 K. The more accurate equations are
given in Ref. 14 and in radio astronomy texts.

Available Power, Gain, and Loss. As thus defined, Vn is the open-circuit
voltage at the resistor terminals. If an external impedance-matched load of
resistance RL = R is connected, the noise power delivered to it will be

Pn = kTBn (2.30)



which does not depend on the value of R. This is of course also an approxima-
tion, but it is quite accurate at ordinary radar frequencies and temperatures. This
matched-load power is called the available power.17

The concepts of available power, available gain, and its reciprocal, available
loss, are assumed in all noise-temperature and noise-factor equations. These and
other noise-temperature concepts are explained fully in Refs. 14, 17, and 25.
Briefly, available power at an output port is that which would be delivered to a
load that matches (in the complex-conjugate sense) the impedance of the source.
Available gain of a two-port transducer or cascade of transducers is the ratio of
the available power at the output port to that available from the source connected
to the input port, with the stipulation that the available output power be mea-
sured with the actual input source (not necessarily impedance-matched) con-
nected.

Noise Temperature. The usual noise that exists in a radar receiving system
is partly of thermal origin and partly from other noise-generating processes.
Most of these other processes produce noise which, within typical receiver
bandwidths, has the same spectral and probabilistic nature as does thermal
noise. Therefore it can all be lumped together and regarded as thermal noise.
This is done, and the available-power level Pn is described by assigning to the
noise a semifictitious "noise temperature" Tn, which is

Tn = PnKkBn) (2.31)

This is of course simply an inversion of Eq. (2.30), except that T in Eq. (2.30)
refers to an actual (thermodynamic) temperature. The temperature defined by
Eq. (2.31) is semifictitious because of the nonthermal origin of some of the noise.
When this temperature represents the available-noise-power output of the entire
receiving system, it is commonly called the system noise temperature or operat-
ing noise temperature,17 and it is then used to calculate the system noise power
and signal-to-noise ratio, as in Eqs. (2.4) to (2.6).

The Referral Concept. A receiving system can be represented as a cascade
of two-port transducers, preceded by a source (the antenna) and terminated by
a load. [However, in the discussion of system noise temperature, only those
parts of the receiver that precede the detector (demodulator) are of
significance, for the noise level at that point determines the signal-to-noise ratio
for signal-detection-calculation purposes.]

Noise may arise at any and all points in this cascade, so that the noise level
changes from point to point. The important quantity is the output noise power
Pno. For purposes of signal-to-noise calculation, however, it is convenient to re-
fer this output noise to the system input terminals. This is done by defining the
system noise temperature Ts so that it satisfies the relation

kTsBn = PJG0 (2.32)

where G0 is the overall-system available gain and Bn is the noise bandwidth of the
system [Eq. (2.14)]. The output power Pno is thus "referred" to the system input
(the antenna terminals), and Ts is actually the system input noise temperature.
The product W8Bn is thus the system output noise power referred to the antenna
terminals.

Each two-port transducer of the receiving-system cascade can be regarded as



having its own effective input noise temperature Te, representing its intrinsic
available output noise power referred to its own input terminals. Here intrinsic
means the power that the transducer would generate with a noise-free input ter-
mination of the same impedance as the actual input termination. Transducer out-
put power is referred to the input terminals by dividing the output power by the
available gain of the transducer.

For an TV-transducer cascade, the system input noise temperature (with the
antenna terminals considered to be the system input terminals) is then given by

T.-T. + Z -£ .2.33,

Here T0 is the antenna noise temperature, representing the available noise power
at the antenna terminals, and G, is the available gain of the system between its
input terminals and the input terminals of the /th cascaded component. (By this
definition G1 = 1 always.)

To illustrate these principles concretely, this formula will here be applied to a
two-transducer cascade representing a typical receiving system (Fig. 2.8). The
first transducer is the transmission line that connects the antenna to the receiver
input terminals, and the second transducer is the predetection portion of the re-
ceiver itself. (As mentioned above, for purposes of signal-noise analysis subse-
quent portions of the receiver are not considered.) If desired, a many-transducer
receiving system could be further broken down, with a preamplifier and possibly
other units considered as separate elements of the cascade.

For this system, if the receiving-transmission-line noise temperature is repre-
sented by Tr and its loss factor is Lr (=1/G2) and if the receiver effective input
noise temperature is Te, Eq. (2.33) becomes

T5 = Ta + TV + LrTe (2.34)

It now remains to discuss evaluation of T0, Tr, Lr, and Te.

Antenna Noise Temperature. Antenna noise is the result of (1) noise in the
form of electromagnetic waves received by the antenna from external radiating
sources and (2) thermal noise generated in the ohmic components (resistive
conductors and imperfect insulators) of the antenna structure. The product
kT0Bn is the noise power available at the antenna terminals within the receiver
bandwidth.

This noise temperature is dependent in a somewhat complicated way on the
noise temperatures of various radiating sources within the receiving-antenna pat-
tern, including its sidelobes and backlobes. The concept of noise temperature of
a radiating source is based on Planck's law or on the Rayleigh-Jeans approxima-
tion to it, analogous to the relationship of resistor noise temperature to Nyquist's
theorem.

FIG. 2.8 Block diagram of a cascade receiving system.
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The antenna noise temperature is not dependent on the antenna gain and
beam width when a uniform-temperature source fills the beam. If the noise
sources within the beam are of different temperatures, the resulting antenna tem-
perature will be a solid-angle-weighted average of the source temperatures. The
noise temperatures of most of the radiating sources that an antenna "sees" are
frequency-dependent; therefore antenna temperature is a function of frequency.
That is, antenna noise is not truly "white," but within any typical receiver
passband it is virtually white.

In the microwave region, it is also a function of the antenna beam elevation
angle, because in this region most of the "sky noise" is the result of atmospheric
radiation. This radiation is related to atmospheric absorption, which is greater at
low angles where the antenna beam sees a thicker slice of the lossy atmosphere
than it does at higher angles.

Curves of antenna temperature for a lossless antenna are shown in Fig. 2.9,
calculated for typical conditions.14'25

FIG. 2.9 Noise temperature of an idealized antenna (lossless, no earth-directed
sidelobes) located at the earth's surface, as a function of frequency, for a number of beam
elevation angles. Solid curves are for geometric-mean galactic temperature, sun noise 10
times quiet level, sun in unity-gain sidelobe, cool temperate-zone troposphere, 2.7 K cos-
mic blackbody radiation, and zero ground noise. The upper dashed curve is for maximum
galactic noise (center of galaxy, narrow-beam antenna), sun noise 100 times quiet level,
and zero elevation angle; other factors are the same as for the solid curves. The lower
dashed curve is for minimum galactic noise, zero sun noise, 90° elevation angle. (The
bump in the curves at about 500 MHz is due to the sun-noise characteristic. The curves for
low elevation angles lie below those for high angles at frequencies below 400 MHz because
of reduction of galactic noise by atmospheric absorption. The maxima at 22.2 and 60 GHz
are due to water-vapor and oxygen absorption resonances; see Fig. 2.19.) (From Ref. 13.)
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The curves of Fig. 2.9 apply to a lossless antenna that has no part of its pattern
directed toward a warm earth. The lossless condition means that the curves rep-
resent only the noise received from external radiating sources. Therefore any
thermal noise generated in the antenna must be added to the noise represented by
these curves. In most practical cases, a ground noise-temperature component
must also be added because part of the total antenna pattern is directed toward
the ground. (This will be true because of sidelobes and backlobes even if the main
beam is pointed upward.) But then also the sky-noise component given by Fig.
2.9 must be reduced somewhat because part of the total antenna pattern is not
then directed at the sky. The reduction factor is (1 - TagITtg), where Tag is the
ground noise-temperature contribution to the total antenna temperature and Ttg is
the effective noise temperature of the ground.

If a is the fraction of the solid-angle antenna power pattern subtended by the
earth, then Tag = a.Ttg. If the earth is perfectly absorptive (a thermodynamic
blackbody), its effective noise temperature may be assumed to be approximately
290 K. A suggested conventional value for Tag is 36 K, which would result if a
290 K earth were viewed over a ir-steradian solid angle by sidelobes and back-
lobes averaging 0.5 gain (-3 dB). These sidelobes are typical of a "good" radar
antenna but not one of the ultralow-noise variety.

Moreover, some practical antennas have appreciable ohmic loss, expressed by
the loss factor La (Sec. 2.3). An additional thermal-noise contribution of amount
Tta(\ - l/La) then results, where Tta is the thermal temperature of the lossy ma-
terial of the antenna. However, the noise from external sources is then also re-
duced by the factor I/1La. The total correction to the temperature values given by
Fig. 2.9, to account for both ground-noise contribution and antenna loss, is then
given by the following formula:

Tatt - TaglTtg) + Tag
Ta = ?*-£ ^ + Tta(l - 1/LJ (2.35«)

La

where Ta
r is the temperature given by Fig. 2.9. For Tag = 36 K and

Ttg = Tta = 290 K, this becomes

0.876 Ti - 254
Ta = + 290 (2.35«

La

and if L0 = 1 (lossless antenna), it further simplifies to

Ta = 0.876 JJ + 36 (2.35c)

Transmission-Line Noise Temperature. Dicke26 has shown that if a passive
transducer of noise bandwidth Bn connected in a cascade system is at a thermal
temperature Tt and if its available loss factor is L, the thermal-noise power
available at its output terminals is

Pno = kTfln(\ - UL) (2.36)

A transmission line is a passive transducer. From Eq. (2.36) together with Eq.
(2.31) and the definition of input temperature, it is deduced that the input noise
temperature of a receiving transmission line of thermal temperature Ttr and loss
factor Lr is



Tr = Ttr(Lr - 1) (2.37)

(In this referral operation, multiplication by loss factor is equivalent to division
by gain.) The receiving-transmission-line loss factor Lr is defined in terms of a
CW signal received at the nominal radar frequency by the antenna. It is the ratio
of the signal power available at the antenna terminals to that available at the re-
ceiver input terminals (points A and B, Fig. 2.8). A suggested conventional value
for Ttr is 290 K.

Receiver Noise Temperature. The effective input noise temperature of the
receiver Te may sometimes be given directly by the manufacturer or the
designer. In other cases, the noise figure Fn may be given. The relationship
between the noise figure and the effective input noise temperature of the
receiver or, in fact, of any transducer is given by17

Te = T0(Fn - 1) (2.38)

where T0 is, by convention, 290 K. In this formula Fn is a power ratio, not the
decibel value that is usually given.

This formula is applicable to a single-response receiver (one for which a single
RF input frequency corresponds to only one output or IF frequency and vice
versa). Methods of computing noise temperatures when a double- or multiple-
response receiver is used (e.g., for a superheterodyne receiver without
preselection) are described in Refs. 17 and 25. Single-response receivers are or-
dinarily used in radar systems.

It is worth mentioning a point that has been well emphasized in the specialized
literature of radio noise but is nevertheless easily overlooked. A receiver noise-
temperature or noise-figure rating applies when a particular terminating imped-
ance is connected at the receiver input. If this impedance changes, the noise tem-
perature changes. Therefore, in principle, when a noise-temperature rating is
quoted for a receiver, the source impedance should be specified, especially since
the optimum (lowest) noise temperature does not necessarily occur when imped-
ances are matched. However, when a receiver noise temperature is quoted with-
out this impedance specification, it is presumable that the optimum source im-
pedance is implied.

2.6 PATTERNPROPAGATIONFACTOR

The pattern propagation factors Ft and Fr in the range equation account for the
facts that (1) the target may not be in the beam maximum of the vertical-plane
antenna pattern and (2) non-free-space wave propagation may occur. This single
factor, rather than two separate factors, is designed to account for both of those
effects. This is necessary because they become inextricably intertwined in the
calculation of multipath interference, which is the most important non-free-space
effect.

As will be seen, this effect can result in very considerable increase or decrease
of the radar detection range compared with the free-space range. In this chapter,
the basic ideas of pattern-propagation-factor calculation and some typical
multipath-interference results will be presented. Additional details are given in
Ref. 14, Chap. 6, and in Ref. 15.




